These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 21124951)

  • 1. Untangling the Interplay between Epidemic Spread and Transmission Network Dynamics.
    Kamp C
    PLoS Comput Biol; 2010 Nov; 6(11):e1000984. PubMed ID: 21124951
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Bayesian inference framework to reconstruct transmission trees using epidemiological and genetic data.
    Morelli MJ; Thébaud G; Chadœuf J; King DP; Haydon DT; Soubeyrand S
    PLoS Comput Biol; 2012; 8(11):e1002768. PubMed ID: 23166481
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Epidemic Wave Dynamics Attributable to Urban Community Structure: A Theoretical Characterization of Disease Transmission in a Large Network.
    Hoen AG; Hladish TJ; Eggo RM; Lenczner M; Brownstein JS; Meyers LA
    J Med Internet Res; 2015 Jul; 17(7):e169. PubMed ID: 26156032
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Assessing the danger of self-sustained HIV epidemics in heterosexuals by population based phylogenetic cluster analysis.
    Turk T; Bachmann N; Kadelka C; Böni J; Yerly S; Aubert V; Klimkait T; Battegay M; Bernasconi E; Calmy A; Cavassini M; Furrer H; Hoffmann M; Günthard HF; Kouyos RD;
    Elife; 2017 Sep; 6():. PubMed ID: 28895527
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Deterministic Compartmental Modeling Framework for Disease Transmission.
    Villasin KJB; Rodriguez EM; Lao AR
    Methods Mol Biol; 2021; 2189():157-167. PubMed ID: 33180300
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High-resolution epidemic simulation using within-host infection and contact data.
    Nguyen VK; Mikolajczyk R; Hernandez-Vargas EA
    BMC Public Health; 2018 Jul; 18(1):886. PubMed ID: 30016958
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Progression and transmission of HIV (PATH 4.0)-A new agent-based evolving network simulation for modeling HIV transmission clusters.
    Singh S; France AM; Chen YH; Farnham PG; Oster AM; Gopalappa C
    Math Biosci Eng; 2021 Mar; 18(3):2150-2181. PubMed ID: 33892539
    [TBL] [Abstract][Full Text] [Related]  

  • 8. HIV epidemic appraisals for assisting in the design of effective prevention programmes: shifting the paradigm back to basics.
    Mishra S; Sgaier SK; Thompson LH; Moses S; Ramesh BM; Alary M; Wilson D; Blanchard JF
    PLoS One; 2012; 7(3):e32324. PubMed ID: 22396756
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Network analyses to quantify effects of host movement in multilevel disease transmission models using foot and mouth disease in Cameroon as a case study.
    Pomeroy LW; Kim H; Xiao N; Moritz M; Garabed R
    PLoS Comput Biol; 2019 Aug; 15(8):e1007184. PubMed ID: 31465448
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An agent-based epidemic simulation of social behaviors affecting HIV transmission among Taiwanese homosexuals.
    Huang CY
    Comput Math Methods Med; 2015; 2015():867264. PubMed ID: 25815047
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Exact epidemic analysis for the star topology.
    Schwartz N; Stone L
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Apr; 87(4):042815. PubMed ID: 23679481
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Acute HIV infection transmission among people who inject drugs in a mature epidemic setting.
    Escudero DJ; Lurie MN; Mayer KH; Weinreb C; King M; Galea S; Friedman SR; Marshall BD
    AIDS; 2016 Oct; 30(16):2537-2544. PubMed ID: 27490641
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dynamics and control of diseases in networks with community structure.
    Salathé M; Jones JH
    PLoS Comput Biol; 2010 Apr; 6(4):e1000736. PubMed ID: 20386735
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Stochastic Models of Emerging Infectious Disease Transmission on Adaptive Random Networks.
    Pipatsart N; Triampo W; Modchang C
    Comput Math Methods Med; 2017; 2017():2403851. PubMed ID: 29075314
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Recalibrating disease parameters for increasing realism in modeling epidemics in closed settings.
    Bioglio L; Génois M; Vestergaard CL; Poletto C; Barrat A; Colizza V
    BMC Infect Dis; 2016 Nov; 16(1):676. PubMed ID: 27842507
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Agent-based and phylogenetic analyses reveal how HIV-1 moves between risk groups: injecting drug users sustain the heterosexual epidemic in Latvia.
    Graw F; Leitner T; Ribeiro RM
    Epidemics; 2012 Jun; 4(2):104-16. PubMed ID: 22664069
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Epidemic modeling with discrete-space scheduled walkers: extensions and research opportunities.
    Borkowski M; Podaima BW; McLeod RD
    BMC Public Health; 2009 Nov; 9 Suppl 1(Suppl 1):S14. PubMed ID: 19922684
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of Mitigation and Control Policies in Realistic Epidemic Models Accounting for Household Transmission Dynamics.
    Alarid-Escudero F; Andrews JR; Goldhaber-Fiebert JD
    Med Decis Making; 2024 Jan; 44(1):5-17. PubMed ID: 37953597
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Epidemic progression on networks based on disease generation time.
    Davoudi B; Moser F; Brauer F; Pourbohloul B
    J Biol Dyn; 2013; 7(1):148-60. PubMed ID: 23889499
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of contact structure on the transient evolution of HIV virulence.
    Park SW; Bolker BM
    PLoS Comput Biol; 2017 Mar; 13(3):e1005453. PubMed ID: 28362805
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.