These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

216 related articles for article (PubMed ID: 21124995)

  • 1. Sarcomere formation occurs by the assembly of multiple latent protein complexes.
    Rui Y; Bai J; Perrimon N
    PLoS Genet; 2010 Nov; 6(11):e1001208. PubMed ID: 21124995
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Flightin is essential for thick filament assembly and sarcomere stability in Drosophila flight muscles.
    Reedy MC; Bullard B; Vigoreaux JO
    J Cell Biol; 2000 Dec; 151(7):1483-500. PubMed ID: 11134077
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The conserved transmembrane proteoglycan Perdido/Kon-tiki is essential for myofibrillogenesis and sarcomeric structure in Drosophila.
    Pérez-Moreno JJ; Bischoff M; Martín-Bermudo MD; Estrada B
    J Cell Sci; 2014 Jul; 127(Pt 14):3162-73. PubMed ID: 24794494
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Functional analysis of slow myosin heavy chain 1 and myomesin-3 in sarcomere organization in zebrafish embryonic slow muscles.
    Xu J; Gao J; Li J; Xue L; Clark KJ; Ekker SC; Du SJ
    J Genet Genomics; 2012 Feb; 39(2):69-80. PubMed ID: 22361506
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Early incorporation of obscurin into nascent sarcomeres: implication for myofibril assembly during cardiac myogenesis.
    Borisov AB; Martynova MG; Russell MW
    Histochem Cell Biol; 2008 Apr; 129(4):463-78. PubMed ID: 18219491
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Troponin I is required for myofibrillogenesis and sarcomere formation in Drosophila flight muscle.
    Nongthomba U; Clark S; Cummins M; Ansari M; Stark M; Sparrow JC
    J Cell Sci; 2004 Apr; 117(Pt 9):1795-805. PubMed ID: 15075240
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Determining structure/function relationships for sarcomeric myosin heavy chain by genetic and transgenic manipulation of Drosophila.
    Swank DM; Wells L; Kronert WA; Morrill GE; Bernstein SI
    Microsc Res Tech; 2000 Sep; 50(6):430-42. PubMed ID: 10998634
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cofilin Loss in Drosophila Muscles Contributes to Muscle Weakness through Defective Sarcomerogenesis during Muscle Growth.
    Balakrishnan M; Yu SF; Chin SM; Soffar DB; Windner SE; Goode BL; Baylies MK
    Cell Rep; 2020 Jul; 32(3):107893. PubMed ID: 32697999
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ultrastructure of developing flight muscle in Drosophila. I. Assembly of myofibrils.
    Reedy MC; Beall C
    Dev Biol; 1993 Dec; 160(2):443-65. PubMed ID: 8253277
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Myosin isoform switching during assembly of the Drosophila flight muscle thick filament lattice.
    Orfanos Z; Sparrow JC
    J Cell Sci; 2013 Jan; 126(Pt 1):139-48. PubMed ID: 23178940
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mutations in Drosophila myosin rod cause defects in myofibril assembly.
    Salvi SS; Kumar RP; Ramachandra NB; Sparrow JC; Nongthomba U
    J Mol Biol; 2012 May; 419(1-2):22-40. PubMed ID: 22370558
    [TBL] [Abstract][Full Text] [Related]  

  • 12. SALS, a WH2-domain-containing protein, promotes sarcomeric actin filament elongation from pointed ends during Drosophila muscle growth.
    Bai J; Hartwig JH; Perrimon N
    Dev Cell; 2007 Dec; 13(6):828-42. PubMed ID: 18061565
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanisms of thin filament assembly in embryonic chick cardiac myocytes: tropomodulin requires tropomyosin for assembly.
    Gregorio CC; Fowler VM
    J Cell Biol; 1995 May; 129(3):683-95. PubMed ID: 7730404
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An ongoing role for structural sarcomeric components in maintaining Drosophila melanogaster muscle function and structure.
    Perkins AD; Tanentzapf G
    PLoS One; 2014; 9(6):e99362. PubMed ID: 24915196
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Zasp52, a Core Z-disc Protein in Drosophila Indirect Flight Muscles, Interacts with α-Actinin via an Extended PDZ Domain.
    Liao KA; González-Morales N; Schöck F
    PLoS Genet; 2016 Oct; 12(10):e1006400. PubMed ID: 27783625
    [TBL] [Abstract][Full Text] [Related]  

  • 16. SUMO system - a key regulator in sarcomere organization.
    Nayak A; Amrute-Nayak M
    FEBS J; 2020 Jun; 287(11):2176-2190. PubMed ID: 32096922
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Assembly of the giant protein projectin during myofibrillogenesis in Drosophila indirect flight muscles.
    Ayme-Southgate A; Bounaix C; Riebe TE; Southgate R
    BMC Cell Biol; 2004 Apr; 5():17. PubMed ID: 15119962
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The UNC-45 chaperone is critical for establishing myosin-based myofibrillar organization and cardiac contractility in the Drosophila heart model.
    Melkani GC; Bodmer R; Ocorr K; Bernstein SI
    PLoS One; 2011; 6(7):e22579. PubMed ID: 21799905
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sarcomere lattice geometry influences cooperative myosin binding in muscle.
    Tanner BC; Daniel TL; Regnier M
    PLoS Comput Biol; 2007 Jul; 3(7):e115. PubMed ID: 17630823
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanical tension and spontaneous muscle twitching precede the formation of cross-striated muscle
    Weitkunat M; Brasse M; Bausch AR; Schnorrer F
    Development; 2017 Apr; 144(7):1261-1272. PubMed ID: 28174246
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.