These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

421 related articles for article (PubMed ID: 21125088)

  • 1. Approaching the electromagnetic mechanism of surface-enhanced Raman scattering: from self-assembled arrays to individual gold nanoparticles.
    Tong L; Zhu T; Liu Z
    Chem Soc Rev; 2011 Mar; 40(3):1296-304. PubMed ID: 21125088
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Labeled gold nanoparticles immobilized at smooth metallic substrates: systematic investigation of surface plasmon resonance and surface-enhanced Raman scattering.
    Driskell JD; Lipert RJ; Porter MD
    J Phys Chem B; 2006 Sep; 110(35):17444-51. PubMed ID: 16942083
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Aligned gold nanoneedle arrays for surface-enhanced Raman scattering.
    Yang Y; Tanemura M; Huang Z; Jiang D; Li ZY; Huang YP; Kawamura G; Yamaguchi K; Nogami M
    Nanotechnology; 2010 Aug; 21(32):325701. PubMed ID: 20639588
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Highly controlled surface-enhanced Raman scattering chips using nanoengineered gold blocks.
    Yokota Y; Ueno K; Misawa H
    Small; 2011 Jan; 7(2):252-8. PubMed ID: 21213390
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Deposition method for preparing SERS-active gold nanoparticle substrates.
    Kho KW; Shen ZX; Zeng HC; Soo KC; Olivo M
    Anal Chem; 2005 Nov; 77(22):7462-71. PubMed ID: 16285701
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhanced Raman scattering from nanoparticle-decorated nanocone substrates: a practical approach to harness in-plane excitation.
    Hu YS; Jeon J; Seok TJ; Lee S; Hafner JH; Drezek RA; Choo H
    ACS Nano; 2010 Oct; 4(10):5721-30. PubMed ID: 20836500
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Single-molecule and single-nanoparticle SERS: from fundamental mechanisms to biomedical applications.
    Qian XM; Nie SM
    Chem Soc Rev; 2008 May; 37(5):912-20. PubMed ID: 18443676
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Silica-void-gold nanoparticles: temporally stable surface-enhanced Raman scattering substrates.
    Roca M; Haes AJ
    J Am Chem Soc; 2008 Oct; 130(43):14273-9. PubMed ID: 18831552
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In situ controlled growth of well-dispersed gold nanoparticles in TiO2 nanotube arrays as recyclable substrates for surface-enhanced Raman scattering.
    Chen Y; Tian G; Pan K; Tian C; Zhou J; Zhou W; Ren Z; Fu H
    Dalton Trans; 2012 Jan; 41(3):1020-6. PubMed ID: 22083352
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Self-assembled Au nanoparticles as substrates for surface-enhanced vibrational spectroscopy: optimization and electrochemical stability.
    Fan M; Brolo AG
    Chemphyschem; 2008 Sep; 9(13):1899-907. PubMed ID: 18704901
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multilayer structures of self-assembled gold nanoparticles as a unique SERS and SEIRA substrate.
    Baia M; Toderas F; Baia L; Maniu D; Astilean S
    Chemphyschem; 2009 May; 10(7):1106-11. PubMed ID: 19322798
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fabrication and characterization of homogeneous surface-enhanced Raman scattering substrates by single pulse UV-laser treatment of gold and silver films.
    Christou K; Knorr I; Ihlemann J; Wackerbarth H; Beushausen V
    Langmuir; 2010 Dec; 26(23):18564-9. PubMed ID: 21043441
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characteristics of surface-enhanced Raman scattering and surface-enhanced fluorescence using a single and a double layer gold nanostructure.
    Hossain MK; Huang GG; Kaneko T; Ozaki Y
    Phys Chem Chem Phys; 2009 Sep; 11(34):7484-90. PubMed ID: 19690723
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Surface-enhanced Raman scattering detection of DNA derived from the west nile virus genome using magnetic capture of Raman-active gold nanoparticles.
    Zhang H; Harpster MH; Park HJ; Johnson PA; Wilson WC
    Anal Chem; 2011 Jan; 83(1):254-60. PubMed ID: 21121693
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sub-attomolar HIV-1 DNA detection using surface-enhanced Raman spectroscopy.
    Hu J; Zheng PC; Jiang JH; Shen GL; Yu RQ; Liu GK
    Analyst; 2010 May; 135(5):1084-9. PubMed ID: 20419260
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Surface-enhanced Raman scattering on periodic metal nanotips with tunable sharpness.
    Linn NC; Sun CH; Arya A; Jiang P; Jiang B
    Nanotechnology; 2009 Jun; 20(22):225303. PubMed ID: 19433880
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Surface enhanced Raman spectroscopic study on the gold-labeled protein self-assembled surface].
    Chao KF; Zhang YL; Kong XG; Feng LY; Li B; Zeng QH; Song K; Sun YJ
    Guang Pu Xue Yu Guang Pu Fen Xi; 2007 Sep; 27(9):1757-60. PubMed ID: 18051523
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluation of electromagnetic enhancement of surface enhanced hyper Raman scattering using plasmonic properties of binary active sites in single Ag nanoaggregates.
    Itoh T; Yoshikawa H; Yoshida K; Biju V; Ishikawa M
    J Chem Phys; 2009 Jun; 130(21):214706. PubMed ID: 19508086
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Simple synthetic route for SERS-active gold nanoparticles substrate with controlled shape and organization.
    Bechelany M; Brodard P; Elias J; Brioude A; Michler J; Philippe L
    Langmuir; 2010 Sep; 26(17):14364-71. PubMed ID: 20715801
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Shape-dependent surface-enhanced Raman scattering in gold-Raman probe-silica sandwiched nanoparticles for biocompatible applications.
    Li M; Cushing SK; Zhang J; Lankford J; Aguilar ZP; Ma D; Wu N
    Nanotechnology; 2012 Mar; 23(11):115501. PubMed ID: 22383452
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.