These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

233 related articles for article (PubMed ID: 21125099)

  • 21. Passive droplet generation in aqueous two-phase systems with a variable-width microchannel.
    Choi D; Lee E; Kim SJ; Han M
    Soft Matter; 2019 Jun; 15(23):4647-4655. PubMed ID: 31073554
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Formation of "snowmanlike" polystyrene/poly(methyl methacrylate)/toluene droplets dispersed in an aqueous solution of a nonionic surfactant at thermodynamic equilibrium.
    Saito N; Nakatsuru R; Kagari Y; Okubo M
    Langmuir; 2007 Nov; 23(23):11506-12. PubMed ID: 17929841
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Microfluidic preparation of water-in-oil-in-water emulsions with an ultra-thin oil phase layer.
    Saeki D; Sugiura S; Kanamori T; Sato S; Ichikawa S
    Lab Chip; 2010 Feb; 10(3):357-62. PubMed ID: 20091008
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Droplet Formation by Rupture of Vibration-Induced Interfacial Fingers.
    Mak SY; Chao Y; Rahman S; Shum HC
    Langmuir; 2018 Jan; 34(3):926-932. PubMed ID: 29094601
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Aqueous Triple-Phase System in Microwell Array for Generating Uniform-Sized DNA Hydrogel Particles.
    Masukawa MK; Okuda Y; Takinoue M
    Front Genet; 2021; 12():705022. PubMed ID: 34367260
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Monodisperse w/w/w double emulsion induced by phase separation.
    Song Y; Shum HC
    Langmuir; 2012 Aug; 28(33):12054-9. PubMed ID: 22849828
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Microfluidic production of single micrometer-sized hydrogel beads utilizing droplet dissolution in a polar solvent.
    Sugaya S; Yamada M; Hori A; Seki M
    Biomicrofluidics; 2013; 7(5):54120. PubMed ID: 24396529
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Microfluidic generation of ATPS droplets by transient double emulsion technique.
    Zhou C; Zhu P; Han X; Shi R; Tian Y; Wang L
    Lab Chip; 2021 Jul; 21(14):2684-2690. PubMed ID: 34170274
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Microfluidic Formation of Hydrogel Microcapsules with a Single Aqueous Core by Spontaneous Cross-Linking in Aqueous Two-Phase System Droplets.
    Watanabe T; Motohiro I; Ono T
    Langmuir; 2019 Feb; 35(6):2358-2367. PubMed ID: 30626189
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A micro-reactor for preparing uniform molecularly imprinted polymer beads.
    Zourob M; Mohr S; Mayes AG; Macaskill A; Pérez-Moral N; Fielden PR; Goddard NJ
    Lab Chip; 2006 Feb; 6(2):296-301. PubMed ID: 16450041
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Large ultrathin shelled drops produced via non-confined microfluidics.
    Chaurasia AS; Josephides DN; Sajjadi S
    Chemphyschem; 2015 Feb; 16(2):403-11. PubMed ID: 25382308
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Formation of bubbles and droplets in parallel, coupled flow-focusing geometries.
    Hashimoto M; Shevkoplyas SS; Zasońska B; Szymborski T; Garstecki P; Whitesides GM
    Small; 2008 Oct; 4(10):1795-805. PubMed ID: 18819139
    [TBL] [Abstract][Full Text] [Related]  

  • 33. High-Throughput Aqueous Two-Phase System Droplet Generation by Oil-Free Passive Microfluidics.
    Mastiani M; Seo S; Mosavati B; Kim M
    ACS Omega; 2018 Aug; 3(8):9296-9302. PubMed ID: 31459062
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Formation of monodisperse calcium alginate microbeads by rupture of water-in-oil-in-water droplets with an ultra-thin oil phase layer.
    Saeki D; Sugiura S; Kanamori T; Sato S; Ichikawa S
    Lab Chip; 2010 Sep; 10(17):2292-5. PubMed ID: 20625583
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Dynamic interfacial tension measurements with microfluidic Y-junctions.
    Steegmans ML; Warmerdam A; Schroën KG; Boom RM
    Langmuir; 2009 Sep; 25(17):9751-8. PubMed ID: 19583180
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Aqueous Two-Phase System (ATPS)-Based Polymersomes for Particle Isolation and Separation.
    Seo H; Nam C; Kim E; Son J; Lee H
    ACS Appl Mater Interfaces; 2020 Dec; 12(49):55467-55475. PubMed ID: 33237722
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Partitioning and assembly of metal particles and their bioconjugates in aqueous two-phase systems.
    Helfrich MR; El-Kouedi M; Etherton MR; Keating CD
    Langmuir; 2005 Aug; 21(18):8478-86. PubMed ID: 16114960
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Microfluidic platform for the generation of organic-phase microreactors.
    Cygan ZT; Cabral JT; Beers KL; Amis EJ
    Langmuir; 2005 Apr; 21(8):3629-34. PubMed ID: 15807612
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A microfluidic abacus channel for controlling the addition of droplets.
    Um E; Park JK
    Lab Chip; 2009 Jan; 9(2):207-12. PubMed ID: 19107275
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Preparation of monodispersed chitosan microspheres and in situ encapsulation of BSA in a co-axial microfluidic device.
    Xu JH; Li SW; Tostado C; Lan WJ; Luo GS
    Biomed Microdevices; 2009 Feb; 11(1):243-9. PubMed ID: 18810642
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.