These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
277 related articles for article (PubMed ID: 21125267)
1. Identification of mannose uptake and catabolism genes in Corynebacterium glutamicum and genetic engineering for simultaneous utilization of mannose and glucose. Sasaki M; Teramoto H; Inui M; Yukawa H Appl Microbiol Biotechnol; 2011 Mar; 89(6):1905-16. PubMed ID: 21125267 [TBL] [Abstract][Full Text] [Related]
2. Identification and application of a different glucose uptake system that functions as an alternative to the phosphotransferase system in Corynebacterium glutamicum. Ikeda M; Mizuno Y; Awane S; Hayashi M; Mitsuhashi S; Takeno S Appl Microbiol Biotechnol; 2011 May; 90(4):1443-51. PubMed ID: 21452034 [TBL] [Abstract][Full Text] [Related]
3. Simultaneous utilization of D-cellobiose, D-glucose, and D-xylose by recombinant Corynebacterium glutamicum under oxygen-deprived conditions. Sasaki M; Jojima T; Inui M; Yukawa H Appl Microbiol Biotechnol; 2008 Dec; 81(4):691-9. PubMed ID: 18810427 [TBL] [Abstract][Full Text] [Related]
4. Impact of a new glucose utilization pathway in amino acid-producing Corynebacterium glutamicum. Lindner SN; Seibold GM; Krämer R; Wendisch VF Bioeng Bugs; 2011; 2(5):291-5. PubMed ID: 22008639 [TBL] [Abstract][Full Text] [Related]
5. Mixed glucose and lactate uptake by Corynebacterium glutamicum through metabolic engineering. Neuner A; Heinzle E Biotechnol J; 2011 Mar; 6(3):318-29. PubMed ID: 21370474 [TBL] [Abstract][Full Text] [Related]
6. The phosphotransferase system of Corynebacterium glutamicum: features of sugar transport and carbon regulation. Moon MW; Park SY; Choi SK; Lee JK J Mol Microbiol Biotechnol; 2007; 12(1-2):43-50. PubMed ID: 17183210 [TBL] [Abstract][Full Text] [Related]
7. Engineering of an L-arabinose metabolic pathway in Corynebacterium glutamicum. Kawaguchi H; Sasaki M; Vertès AA; Inui M; Yukawa H Appl Microbiol Biotechnol; 2008 Jan; 77(5):1053-62. PubMed ID: 17965859 [TBL] [Abstract][Full Text] [Related]
8. Investigation of ptsG gene in response to xylose utilization in Corynebacterium glutamicum. Wang C; Cai H; Zhou Z; Zhang K; Chen Z; Chen Y; Wan H; Ouyang P J Ind Microbiol Biotechnol; 2014 Aug; 41(8):1249-58. PubMed ID: 24859809 [TBL] [Abstract][Full Text] [Related]
9. The DeoR-type transcriptional regulator SugR acts as a repressor for genes encoding the phosphoenolpyruvate:sugar phosphotransferase system (PTS) in Corynebacterium glutamicum. Gaigalat L; Schlüter JP; Hartmann M; Mormann S; Tauch A; Pühler A; Kalinowski J BMC Mol Biol; 2007 Nov; 8():104. PubMed ID: 18005413 [TBL] [Abstract][Full Text] [Related]
10. Engineering of pentose transport in Corynebacterium glutamicum to improve simultaneous utilization of mixed sugars. Sasaki M; Jojima T; Kawaguchi H; Inui M; Yukawa H Appl Microbiol Biotechnol; 2009 Nov; 85(1):105-15. PubMed ID: 19529932 [TBL] [Abstract][Full Text] [Related]
11. Metabolic engineering of Corynebacterium glutamicum to produce GDP-L-fucose from glucose and mannose. Chin YW; Park JB; Park YC; Kim KH; Seo JH Bioprocess Biosyst Eng; 2013 Jun; 36(6):749-56. PubMed ID: 23404100 [TBL] [Abstract][Full Text] [Related]
12. Sugar transport systems in Corynebacterium glutamicum: features and applications to strain development. Ikeda M Appl Microbiol Biotechnol; 2012 Dec; 96(5):1191-200. PubMed ID: 23081775 [TBL] [Abstract][Full Text] [Related]
13. Analyses of enzyme II gene mutants for sugar transport and heterologous expression of fructokinase gene in Corynebacterium glutamicum ATCC 13032. Moon MW; Kim HJ; Oh TK; Shin CS; Lee JS; Kim SJ; Lee JK FEMS Microbiol Lett; 2005 Mar; 244(2):259-66. PubMed ID: 15766777 [TBL] [Abstract][Full Text] [Related]
14. Amino acid production from rice straw and wheat bran hydrolysates by recombinant pentose-utilizing Corynebacterium glutamicum. Gopinath V; Meiswinkel TM; Wendisch VF; Nampoothiri KM Appl Microbiol Biotechnol; 2011 Dec; 92(5):985-96. PubMed ID: 21796382 [TBL] [Abstract][Full Text] [Related]
15. Characterization of citrate utilization in Corynebacterium glutamicum by transcriptome and proteome analysis. Polen T; Schluesener D; Poetsch A; Bott M; Wendisch VF FEMS Microbiol Lett; 2007 Aug; 273(1):109-19. PubMed ID: 17559405 [TBL] [Abstract][Full Text] [Related]
16. Engineering of sugar metabolism of Corynebacterium glutamicum for production of amino acid L-alanine under oxygen deprivation. Jojima T; Fujii M; Mori E; Inui M; Yukawa H Appl Microbiol Biotechnol; 2010 Jun; 87(1):159-65. PubMed ID: 20217078 [TBL] [Abstract][Full Text] [Related]
17. Metabolic engineering of Corynebacterium glutamicum for fuel ethanol production under oxygen-deprivation conditions. Inui M; Kawaguchi H; Murakami S; Vertès AA; Yukawa H J Mol Microbiol Biotechnol; 2004; 8(4):243-54. PubMed ID: 16179801 [TBL] [Abstract][Full Text] [Related]
18. ScrB (Cg2927) is a sucrose-6-phosphate hydrolase essential for sucrose utilization by Corynebacterium glutamicum. Engels V; Georgi T; Wendisch VF FEMS Microbiol Lett; 2008 Dec; 289(1):80-9. PubMed ID: 19054097 [TBL] [Abstract][Full Text] [Related]
19. The glycosylated cell surface protein Rpf2, containing a resuscitation-promoting factor motif, is involved in intercellular communication of Corynebacterium glutamicum. Hartmann M; Barsch A; Niehaus K; Pühler A; Tauch A; Kalinowski J Arch Microbiol; 2004 Oct; 182(4):299-312. PubMed ID: 15480574 [TBL] [Abstract][Full Text] [Related]
20. A third glucose uptake bypass in Corynebacterium glutamicum ATCC 31833. Ikeda M; Noguchi N; Ohshita M; Senoo A; Mitsuhashi S; Takeno S Appl Microbiol Biotechnol; 2015 Mar; 99(6):2741-50. PubMed ID: 25549619 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]