These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
157 related articles for article (PubMed ID: 2112542)
21. Localization of the high affinity calcium binding protein and an intrinsic glycoprotein in sarcoplasmic reticulum membranes. Michalak M; Campbell KP; MacLennan DH J Biol Chem; 1980 Feb; 255(4):1317-26. PubMed ID: 6766447 [TBL] [Abstract][Full Text] [Related]
22. Ionized and bound calcium inside isolated sarcoplasmic reticulum of skeletal muscle and its significance in phosphorylation of adenosine triphosphatase by orthophosphate. Prager R; Punzengruber C; Kolassa N; Winkler F; Suko J Eur J Biochem; 1979 Jun; 97(1):239-50. PubMed ID: 157875 [TBL] [Abstract][Full Text] [Related]
23. The identification of sarcoplasmic reticulum terminal cisternae proteins in platelets. Fischer TH; Barton DW; Krause KH; White TE; Campbell KP; White GC Biochem J; 1989 Oct; 263(2):605-8. PubMed ID: 2512909 [TBL] [Abstract][Full Text] [Related]
25. Inhibition of sarcoplasmic reticulum calcium pump by cytosolic protein(s) endogenous to heart and slow skeletal muscle but not fast skeletal muscle. Narayanan N; Newland M; Neudorf D Biochim Biophys Acta; 1983 Oct; 735(1):53-66. PubMed ID: 6313055 [TBL] [Abstract][Full Text] [Related]
26. Rapid purification of calsequestrin from cardiac and skeletal muscle sarcoplasmic reticulum vesicles by Ca2+-dependent elution from phenyl-sepharose. Cala SE; Jones LR J Biol Chem; 1983 Oct; 258(19):11932-6. PubMed ID: 6619149 [TBL] [Abstract][Full Text] [Related]
27. Isolation of terminal cisternae of frog skeletal muscle. Calcium storage and release properties. Volpe P; Bravin M; Zorzato F; Margreth A J Biol Chem; 1988 Jul; 263(20):9901-7. PubMed ID: 2968342 [TBL] [Abstract][Full Text] [Related]
28. Stimulation of calcium transport of sarcoplasmic reticulum vesicles by the calcium complex of ethylene glycol bis(beta-aminoethyl ether)-N,N',-tetraacetic acid. Berman MC J Biol Chem; 1982 Feb; 257(4):1953-7. PubMed ID: 6460030 [TBL] [Abstract][Full Text] [Related]
29. [Isolation of highly active preparations of sarcoplasmic reticulum and Ca2-dependent ATPase from cardiac muscle]. Levitskiĭ DO; Aliev MK; Levchenko TS; Lipitskaia IIa; Smirnov VN Biokhimiia; 1976 May; 41(5):854-63. PubMed ID: 139943 [TBL] [Abstract][Full Text] [Related]
30. Calcium additional to that bound to the transport sites is required for full activation of the sarcoplasmic reticulum Ca-ATPase from skeletal muscle. Alonso GL; González DA; Takara D; Ostuni MA; Sánchez GA Biochim Biophys Acta; 1998 Oct; 1405(1-3):47-54. PubMed ID: 9784602 [TBL] [Abstract][Full Text] [Related]
31. Chemical crosslinking and enzyme kinetics provide no evidence for a regulatory role for the 53 kDa glycoprotein of sarcoplasmic reticulum in calcium transport. Burgess AJ; Matthews I; Grimes EA; Mata AM; Munkonge FM; Lee AG; East JM Biochim Biophys Acta; 1991 Apr; 1064(1):139-47. PubMed ID: 1827350 [TBL] [Abstract][Full Text] [Related]
32. Evidence for the lumenal location of the 53 kDa glycoprotein of sarcoplasmic reticulum. Matthews I; Mata AM; Lee AG; East JM Biochim Biophys Acta; 1993 Mar; 1146(2):265-74. PubMed ID: 7680901 [TBL] [Abstract][Full Text] [Related]
33. High efficiency Ca2+ transport by the sarcoplasmic reticulum Ca2(+)-ATPase in the absence of the 53-kilodalton glycoprotein. Martin DW J Biol Chem; 1990 Dec; 265(34):20946-51. PubMed ID: 2147428 [TBL] [Abstract][Full Text] [Related]
34. A comparison of vesicles derived from terminal cisternae and longitudinal tubules of sarcoplasmic reticulum isolated from rabbit skeletal muscle. Louis CF; Nash-Adler PA; Fudyma G; Shigekawa M; Akowitz A; Katz AM Eur J Biochem; 1980 Oct; 111(1):1-9. PubMed ID: 6449367 [TBL] [Abstract][Full Text] [Related]
35. ATPase activities, Ca2+ transport and phosphoprotein formation in sarcoplasmic reticulum subfractions of fast and slow rabbit muscles. Heilmann C; Brdiczka D; Nickel E; Pette D Eur J Biochem; 1977 Dec; 81(2):211-22. PubMed ID: 145941 [TBL] [Abstract][Full Text] [Related]
36. Inhibition of calcium release from skeletal muscle sarcoplasmic reticulum by calmodulin. Plank B; Wyskovsky W; Hohenegger M; Hellmann G; Suko J Biochim Biophys Acta; 1988 Feb; 938(1):79-88. PubMed ID: 3337818 [TBL] [Abstract][Full Text] [Related]
37. Calcium transport by sarcoplasmic reticulum of skeletal muscle is inhibited by antibodies against the 53-kilodalton glycoprotein of the sarcoplasmic reticulum membrane. Kutchai H; Campbell KP Biochemistry; 1989 May; 28(11):4830-9. PubMed ID: 2527558 [TBL] [Abstract][Full Text] [Related]
38. Identification of 30 kDa calsequestrin-binding protein, which regulates calcium release from sarcoplasmic reticulum of rabbit skeletal muscle. Yamaguchi N; Kasai M Biochem J; 1998 Nov; 335 ( Pt 3)(Pt 3):541-7. PubMed ID: 9794793 [TBL] [Abstract][Full Text] [Related]
39. Ca2+ release from sarcoplasmic reticulum vesicles derived from longitudinal reticulum and terminal cisternae of frog skeletal muscle. Koshita M; Yamamoto M; Hotta K J Biochem; 1982 Oct; 92(4):1103-8. PubMed ID: 6217198 [TBL] [Abstract][Full Text] [Related]
40. Differentiation between Ca2+ transport and ATP-induced Ca2+ binding by sarcoplasmic reticulum. Vale MG; Carvalho AP Biochim Biophys Acta; 1981 Apr; 643(1):168-76. PubMed ID: 6786348 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]