These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
121 related articles for article (PubMed ID: 21125422)
1. Land use effects on macrobenthic communities in southeastern United States tidal creeks. Washburn T; Sanger D Environ Monit Assess; 2011 Sep; 180(1-4):177-88. PubMed ID: 21125422 [TBL] [Abstract][Full Text] [Related]
2. Tidal creek and salt marsh sediments in South Carolina coastal estuaries: II. Distribution of organic contaminants. Sanger DM; Holland AF; Scott GI Arch Environ Contam Toxicol; 1999 Nov; 37(4):458-71. PubMed ID: 10508893 [TBL] [Abstract][Full Text] [Related]
3. Evaluation of the impacts of dock structures and land use on tidal creek ecosystems in South Carolina estuarine environments. Sanger DM; Holland AF; Hernandez DL Environ Manage; 2004 Mar; 33(3):385-400. PubMed ID: 15031758 [TBL] [Abstract][Full Text] [Related]
4. Effects of changing land use on the microbial water quality of tidal creeks. DiDonato GT; Stewart JR; Sanger DM; Robinson BJ; Thompson BC; Holland AF; Van Dolah RF Mar Pollut Bull; 2009 Jan; 58(1):97-106. PubMed ID: 18922549 [TBL] [Abstract][Full Text] [Related]
5. Tidal creek and salt marsh sediments in South Carolina coastal estuaries: I. Distribution of trace metals. Sanger DM; Holland AF; Scott GI Arch Environ Contam Toxicol; 1999 Nov; 37(4):445-57. PubMed ID: 10508892 [TBL] [Abstract][Full Text] [Related]
6. Impacts of Coastal Development on the Ecology of Tidal Creek Ecosystems of the US Southeast including Consequences to Humans. Sanger D; Blair A; DiDonato G; Washburn T; Jones S; Riekerk G; Wirth E; Stewart J; White D; Vandiver L; Holland AF Estuaries Coast; 2015 Jan; 38(Suppl 1):49-66. PubMed ID: 31354396 [TBL] [Abstract][Full Text] [Related]
7. Polycyclic aromatic hydrocarbon contamination in South Carolina salt marsh-tidal creek systems: relationships among sediments, biota, and watershed land use. Garner TR; Weinstein JE; Sanger DM Arch Environ Contam Toxicol; 2009 Jul; 57(1):103-15. PubMed ID: 18998042 [TBL] [Abstract][Full Text] [Related]
8. Anthropogenic impacts on tidal creek sedimentation since 1900. Bost MC; Deaton CD; Rodriguez AB; McKee BA; Fodrie FJ; Miller CB PLoS One; 2023; 18(1):e0280490. PubMed ID: 36652445 [TBL] [Abstract][Full Text] [Related]
9. Hydroids (Cnidaria, Hydrozoa) from Mauritanian Coral Mounds. Gil M; Ramil F; AgÍs JA Zootaxa; 2020 Nov; 4878(3):zootaxa.4878.3.2. PubMed ID: 33311142 [TBL] [Abstract][Full Text] [Related]
10. The size and distribution of tidal creeks affects salt marsh restoration. Wu Y; Liu J; Yan G; Zhai J; Cong L; Dai L; Zhang Z; Zhang M J Environ Manage; 2020 Apr; 259():110070. PubMed ID: 31929037 [TBL] [Abstract][Full Text] [Related]
11. Estuarine habitat quality reflects urbanization at large spatial scales in South Carolina's coastal zone. Van Dolah RF; Riekerk GH; Bergquist DC; Felber J; Chestnut DE; Holland AF Sci Total Environ; 2008 Feb; 390(1):142-54. PubMed ID: 17997472 [TBL] [Abstract][Full Text] [Related]
12. Assessing land-use effects on water quality, in-stream habitat, riparian ecosystems and biodiversity in Patagonian northwest streams. Miserendino ML; Casaux R; Archangelsky M; Di Prinzio CY; Brand C; Kutschker AM Sci Total Environ; 2011 Jan; 409(3):612-24. PubMed ID: 21094515 [TBL] [Abstract][Full Text] [Related]
13. Groundwater controls ecological zonation of salt marsh macrophytes. Wilson AM; Evans T; Moore W; Schutte CA; Joye SB; Hughes AH; Anderson JL Ecology; 2015 Mar; 96(3):840-9. PubMed ID: 26236879 [TBL] [Abstract][Full Text] [Related]
14. Limited Influence of Urban Stormwater Runoff on Salt Marsh Platform and Marsh Creek Oxygen Dynamics in Coastal Georgia. Savidge WB; Brink J; Blanton JO Environ Manage; 2016 Dec; 58(6):1074-1090. PubMed ID: 27688254 [TBL] [Abstract][Full Text] [Related]
15. Assessment of environmental impacts of a colony of free-ranging rhesus monkeys (Macca mulatta) on Morgan Island, South Carolina. Klopchin JL; Stewart JR; Webster LF; Sandifer PA Environ Monit Assess; 2008 Feb; 137(1-3):301-13. PubMed ID: 17564800 [TBL] [Abstract][Full Text] [Related]
16. Reclamation-induced tidal restriction increases dissolved carbon and greenhouse gases diffusive fluxes in salt marsh creeks. Tan LS; Ge ZM; Li SH; Li YL; Xie LN; Tang JW Sci Total Environ; 2021 Jun; 773():145684. PubMed ID: 33940760 [TBL] [Abstract][Full Text] [Related]
17. Analysis of nodal point pollution, variability, and sustainability in mesohaline tidal creeks. Muller A; Muller D Mar Pollut Bull; 2014 Aug; 85(1):204-13. PubMed ID: 24997875 [TBL] [Abstract][Full Text] [Related]
18. Loading of fecal indicator bacteria in North Carolina tidal creek headwaters: hydrographic patterns and terrestrial runoff relationships. Stumpf CH; Piehler MF; Thompson S; Noble RT Water Res; 2010 Sep; 44(16):4704-15. PubMed ID: 20673947 [TBL] [Abstract][Full Text] [Related]
19. Parameterizing the Yellow River Delta tidal creek morphology using automated extraction from remote sensing images. Gong Z; Mou K; Wang Q; Qiu H; Zhang C; Zhou D Sci Total Environ; 2021 May; 769():144572. PubMed ID: 33482556 [TBL] [Abstract][Full Text] [Related]
20. [Extracting method of tidal creek features under heterogeneous background at Yellow River Delta using remotely sensed imagery.]. Wang QW; Gong ZN; Guan HL; Zhang L; Jing R; Wang X Ying Yong Sheng Tai Xue Bao; 2019 Sep; 30(9):3097-3107. PubMed ID: 31529885 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]