These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

98 related articles for article (PubMed ID: 21125493)

  • 1. Profiling RNA polymerase II using the fast chromatin immunoprecipitation method.
    Nelson J; Denisenko O; Bomsztyk K
    Methods Mol Biol; 2011; 703():219-34. PubMed ID: 21125493
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The fast chromatin immunoprecipitation method.
    Nelson J; Denisenko O; Bomsztyk K
    Methods Mol Biol; 2009; 567():45-57. PubMed ID: 19588084
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Temporal ChIP-on-Chip of RNA-Polymerase-II to detect novel gene activation events during photoreceptor maturation.
    Tummala P; Mali RS; Guzman E; Zhang X; Mitton KP
    Mol Vis; 2010 Feb; 16():252-71. PubMed ID: 20161818
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Protocol for the fast chromatin immunoprecipitation (ChIP) method.
    Nelson JD; Denisenko O; Bomsztyk K
    Nat Protoc; 2006; 1(1):179-85. PubMed ID: 17406230
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Temporal Dissection of Rate Limiting Transcriptional Events Using Pol II ChIP and RNA Analysis of Adrenergic Stress Gene Activation.
    Morris DP; Lei B; Longo LD; Bomsztyk K; Schwinn DA; Michelotti GA
    PLoS One; 2015; 10(8):e0134442. PubMed ID: 26244980
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Herpes Simplex Virus 1 Dramatically Alters Loading and Positioning of RNA Polymerase II on Host Genes Early in Infection.
    Birkenheuer CH; Danko CG; Baines JD
    J Virol; 2018 Apr; 92(8):. PubMed ID: 29437966
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inference of RNA polymerase II transcription dynamics from chromatin immunoprecipitation time course data.
    wa Maina C; Honkela A; Matarese F; Grote K; Stunnenberg HG; Reid G; Lawrence ND; Rattray M
    PLoS Comput Biol; 2014 May; 10(5):e1003598. PubMed ID: 24830797
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genome-wide analysis of distribution of RNA polymerase II isoforms using ChIP-seq.
    de Lorenzo L
    Methods Mol Biol; 2015; 1255():209-21. PubMed ID: 25487216
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A complete set of nascent transcription rates for yeast genes.
    Pelechano V; Chávez S; Pérez-Ortín JE
    PLoS One; 2010 Nov; 5(11):e15442. PubMed ID: 21103382
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microplate-based chromatin immunoprecipitation method, Matrix ChIP: a platform to study signaling of complex genomic events.
    Flanagin S; Nelson JD; Castner DG; Denisenko O; Bomsztyk K
    Nucleic Acids Res; 2008 Feb; 36(3):e17. PubMed ID: 18203739
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Profiling RNA Polymerase II Phosphorylation Genome-Wide in Fission Yeast.
    Kecman T; Heo DH; Vasiljeva L
    Methods Enzymol; 2018; 612():489-504. PubMed ID: 30502955
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fast chromatin immunoprecipitation assay.
    Nelson JD; Denisenko O; Sova P; Bomsztyk K
    Nucleic Acids Res; 2006 Jan; 34(1):e2. PubMed ID: 16397291
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Heparanase mediates vascular endothelial growth factor gene transcription in high-glucose human retinal microvascular endothelial cells.
    Hu J; Wang J; Leng X; Hu Y; Shen H; Song X
    Mol Vis; 2017; 23():579-587. PubMed ID: 28848320
    [TBL] [Abstract][Full Text] [Related]  

  • 14. DFF-ChIP: a method to detect and quantify complex interactions between RNA polymerase II, transcription factors, and chromatin.
    Spector BM; Santana JF; Pufall MA; Price DH
    Nucleic Acids Res; 2024 Oct; 52(18):e88. PubMed ID: 39248105
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Occupancy of RNA Polymerase II Phosphorylated on Serine 5 (RNAP S5P) and RNAP S2P on Varicella-Zoster Virus Genes 9, 51, and 66 Is Independent of Transcript Abundance and Polymerase Location within the Gene.
    Henderson HH; Timberlake KB; Austin ZA; Badani H; Sanford B; Tremblay K; Baird NL; Jones K; Rovnak J; Frietze S; Gilden D; Cohrs RJ
    J Virol; 2016 Feb; 90(3):1231-43. PubMed ID: 26559844
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Proteasome inhibition creates a chromatin landscape favorable to RNA Pol II processivity.
    Kinyamu HK; Bennett BD; Bushel PR; Archer TK
    J Biol Chem; 2020 Jan; 295(5):1271-1287. PubMed ID: 31806706
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A rapid micro chromatin immunoprecipitation assay (microChIP).
    Dahl JA; Collas P
    Nat Protoc; 2008; 3(6):1032-45. PubMed ID: 18536650
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genome-scale ChIP-chip analysis using 10,000 human cells.
    Acevedo LG; Iniguez AL; Holster HL; Zhang X; Green R; Farnham PJ
    Biotechniques; 2007 Dec; 43(6):791-7. PubMed ID: 18251256
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multi-step regulation of transcription kinetics explains the non-linear relation between RNA polymerase II density and mRNA expression in dosage compensation.
    Dasmeh P
    J Theor Biol; 2018 Feb; 438():92-95. PubMed ID: 29162446
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phosphorylation of the RNA polymerase II C-terminal domain by TFIIH kinase is not essential for transcription of Saccharomyces cerevisiae genome.
    Hong SW; Hong SM; Yoo JW; Lee YC; Kim S; Lis JT; Lee DK
    Proc Natl Acad Sci U S A; 2009 Aug; 106(34):14276-80. PubMed ID: 19666497
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.