These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 21125831)

  • 1. Ferromagnetism driven by oxygen vacancies in SnO2 nanowires.
    Zhang L; Ge S; Zhang H; Zuo Y
    J Nanosci Nanotechnol; 2010 Aug; 10(8):4936-42. PubMed ID: 21125831
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ultrathin ZnS single crystal nanowires: controlled synthesis and room-temperature ferromagnetism properties.
    Zhu G; Zhang S; Xu Z; Ma J; Shen X
    J Am Chem Soc; 2011 Oct; 133(39):15605-12. PubMed ID: 21870837
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of annealing on the ferromagnetism and photoluminescence of Cu-doped ZnO nanowires.
    Xu HJ; Zhu HC; Shan XD; Liu YX; Gao JY; Zhang XZ; Zhang JM; Wang PW; Hou YM; Yu DP
    J Phys Condens Matter; 2010 Jan; 22(1):016002. PubMed ID: 21386237
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Size dependent magnetization and high-vacuum annealing enhanced ferromagnetism in Zn(1-x)Co(x)O nanowires.
    Jian WB; Chen IJ; Liao TC; Ou YC; Nien CH; Wu ZY; Chen FR; Kai JJ; Lin JJ
    J Nanosci Nanotechnol; 2008 Jan; 8(1):202-11. PubMed ID: 18468061
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of substrates on structural and optical properties of tin oxide (SnO2) nanostructures.
    Johari A; Bhatnagar MC; Rana V
    J Nanosci Nanotechnol; 2012 Oct; 12(10):7903-8. PubMed ID: 23421154
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rapid thermal annealing effects on tin oxide nanowires prepared by vapor-liquid-solid technique.
    Kar A; Yang J; Dutta M; Stroscio MA; Kumari J; Meyyappan M
    Nanotechnology; 2009 Feb; 20(6):065704. PubMed ID: 19417398
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural and magnetic properties of pure and nickel doped SnO2 nanoparticles.
    Aragón FH; Coaquira JA; Hidalgo P; Brito SL; Gouvêa D; Castro RH
    J Phys Condens Matter; 2010 Dec; 22(49):496003. PubMed ID: 21406789
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High Quality Growth of Cobalt Doped GaN Nanowires with Enhanced Ferromagnetic and Optical Response.
    Maraj M; Nabi G; Usman K; Wang E; Wei W; Wang Y; Sun W
    Materials (Basel); 2020 Aug; 13(16):. PubMed ID: 32796564
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Temperature-controlled growth of ZnO nanowires and nanoplates in the temperature range 250-300 degrees C.
    Xu C; Kim D; Chun J; Rho K; Chon B; Hong S; Joo T
    J Phys Chem B; 2006 Nov; 110(43):21741-6. PubMed ID: 17064134
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Shape Engineering Driven by Selective Growth of SnO
    Alonso-Orts M; Sánchez AM; Hindmarsh SA; López I; Nogales E; Piqueras J; Méndez B
    Nano Lett; 2017 Jan; 17(1):515-522. PubMed ID: 28001409
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Room-temperature ferromagnetism in graphitic petal arrays.
    Rout CS; Kumar A; Kumar N; Sundaresan A; Fisher TS
    Nanoscale; 2011 Mar; 3(3):900-3. PubMed ID: 21264436
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Raman and photoluminescence properties of highly Cu doped ZnO nanowires fabricated by vapor-liquid-solid process.
    Zhu H; Iqbal J; Xu H; Yu D
    J Chem Phys; 2008 Sep; 129(12):124713. PubMed ID: 19045054
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Growth and luminescence of ternary semiconductor ZnCdSe nanowires by metalorganic chemical vapor deposition.
    Zhang XT; Liu Z; Li Q; Hark SK
    J Phys Chem B; 2005 Sep; 109(38):17913-6. PubMed ID: 16853298
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synthesis of Zn2SnO4 nanowires and their photoluminescence properties.
    Lei M; Kwong FL; Ng DH
    J Nanosci Nanotechnol; 2010 Dec; 10(12):8432-7. PubMed ID: 21121350
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Controlling Growth High Uniformity Indium Selenide (In
    Hsu YC; Hung YC; Wang CY
    Nanoscale Res Lett; 2017 Sep; 12(1):532. PubMed ID: 28916974
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Epitaxial highly ordered Sb:SnO
    Zervos M; Lathiotakis N; Kelaidis N; Othonos A; Tanasa E; Vasile E
    Nanoscale Adv; 2019 May; 1(5):1980-1990. PubMed ID: 36134248
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Formation of SnO2 Nanowires Using Thermal Evaporation of SnO.
    Lin YY; Lin CY; Chen CY; Li YY
    J Nanosci Nanotechnol; 2015 Dec; 15(12):9856-60. PubMed ID: 26682424
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rutile structured SnO2 nanowires synthesized with metal catalyst by thermal evaporation method.
    Nam SH; Boo JH
    J Nanosci Nanotechnol; 2012 Feb; 12(2):1559-62. PubMed ID: 22630000
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optical and Structural Characteristics of Glancing Angle Deposition Synthesized Er₂O₃ Nanowires.
    Panigrahy S; Dhar JC
    J Nanosci Nanotechnol; 2018 Oct; 18(10):7155-7162. PubMed ID: 29954552
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Realizing ferromagnetic ordering in SnO2 and ZnO nanostructures with Fe, Co, Ce ions.
    Verma KC; Kotnala RK
    Phys Chem Chem Phys; 2016 Jul; 18(26):17565-74. PubMed ID: 27305970
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.