These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
256 related articles for article (PubMed ID: 21125871)
1. Effect of InAlGaAs and GaAs combination barrier thickness on the duration of dot formation in different layers of stacked InAs/GaAs quantum dot heterostructure grown by MBE. Halder N; Suseendran J; Chakrabarti S; Herrera M; Bonds M; Browning ND J Nanosci Nanotechnol; 2010 Aug; 10(8):5202-6. PubMed ID: 21125871 [TBL] [Abstract][Full Text] [Related]
2. Thermal stability of the peak emission wavelength in multilayer InAs/GaAs QDs capped with a combination capping of InAlGaAs and GaAs. Adhikary S; Halder N; Chakrabarti S J Nanosci Nanotechnol; 2011 May; 11(5):4067-72. PubMed ID: 21780407 [TBL] [Abstract][Full Text] [Related]
3. All MBE grown InAs/GaAs quantum dot lasers on on-axis Si (001). Kwoen J; Jang B; Lee J; Kageyama T; Watanabe K; Arakawa Y Opt Express; 2018 Apr; 26(9):11568-11576. PubMed ID: 29716075 [TBL] [Abstract][Full Text] [Related]
4. Variation of the photoluminescence spectrum of InAs/GaAs heterostructures grown by ion-beam deposition. Pashchenko AS; Lunin LS; Danilina EM; Chebotarev SN Beilstein J Nanotechnol; 2018; 9():2794-2801. PubMed ID: 30498652 [TBL] [Abstract][Full Text] [Related]
5. InAs quantum dots capped by GaAs, In0.4Ga0.6As dots, and In0.2Ga0.8As well. Fu Y; Wang SM; Ferdos F; Sadeghi M; Larsson A J Nanosci Nanotechnol; 2002; 2(3-4):421-6. PubMed ID: 12908273 [TBL] [Abstract][Full Text] [Related]
6. Influence of GaAsBi Matrix on Optical and Structural Properties of InAs Quantum Dots. Wang P; Pan W; Wu X; Liu J; Cao C; Wang S; Gong Q Nanoscale Res Lett; 2016 Dec; 11(1):280. PubMed ID: 27255900 [TBL] [Abstract][Full Text] [Related]
7. Elimination of Bimodal Size in InAs/GaAs Quantum Dots for Preparation of 1.3-μm Quantum Dot Lasers. Su XB; Ding Y; Ma B; Zhang KL; Chen ZS; Li JL; Cui XR; Xu YQ; Ni HQ; Niu ZC Nanoscale Res Lett; 2018 Feb; 13(1):59. PubMed ID: 29468483 [TBL] [Abstract][Full Text] [Related]
9. Reduced Dislocation of GaAs Layer Grown on Ge-Buffered Si (001) Substrate Using Dislocation Filter Layers for an O-Band InAs/GaAs Quantum Dot Narrow-Ridge Laser. Du Y; Wei W; Xu B; Wang G; Li B; Miao Y; Zhao X; Kong Z; Lin H; Yu J; Su J; Dong Y; Wang W; Ye T; Zhang J; Radamson HH Micromachines (Basel); 2022 Sep; 13(10):. PubMed ID: 36295932 [TBL] [Abstract][Full Text] [Related]
10. Effect of temperature on the growth of InAs/GaAs quantum dots grown on a strained GaAs layer. Ahmad I; Avrutin V; Morkoç H; Moore JC; Baski AA J Nanosci Nanotechnol; 2007 Aug; 7(8):2889-93. PubMed ID: 17685312 [TBL] [Abstract][Full Text] [Related]
11. Suppression of dislocations by Sb spray in the vicinity of InAs/GaAs quantum dots. Dai L; Bremner SP; Tan S; Wang S; Zhang G; Liu Z Nanoscale Res Lett; 2014; 9(1):278. PubMed ID: 24948897 [TBL] [Abstract][Full Text] [Related]
12. Towards InAs/InGaAs/GaAs Quantum Dot Solar Cells Directly Grown on Si Substrate. Azeza B; Hadj Alouane MH; Ilahi B; Patriarche G; Sfaxi L; Fouzri A; Maaref H; M'ghaieth R Materials (Basel); 2015 Jul; 8(7):4544-4552. PubMed ID: 28793455 [TBL] [Abstract][Full Text] [Related]
13. InAs/GaAs quantum dot laser epitaxially grown on on-axis (001) GaAsOI substrate. Liang H; Jin T; Chi C; Sun J; Zhang X; You T; Zhou M; Lin J; Wang S Opt Express; 2021 Nov; 29(23):38465-38476. PubMed ID: 34808899 [TBL] [Abstract][Full Text] [Related]
14. InAs/GaAs quantum-dot lasers grown on on-axis Si (001) without dislocation filter layers. Wang Y; Ma B; Li J; Liu Z; Jiang C; Li C; Liu H; Zhang Y; Zhang Y; Wang Q; Xie X; Qiu X; Ren X; Wei X Opt Express; 2023 Jan; 31(3):4862-4872. PubMed ID: 36785443 [TBL] [Abstract][Full Text] [Related]
15. Morphology and optical properties of single- and multi-layer InAs quantum dots. Hsu CC; Hsu RQ; Wu YH J Electron Microsc (Tokyo); 2010 Aug; 59 Suppl 1():S149-54. PubMed ID: 20576720 [TBL] [Abstract][Full Text] [Related]
16. Improved quantum dot stacking for intermediate band solar cells using strain compensation. Simmonds PJ; Sun M; Laghumavarapu RB; Liang B; Norman AG; Luo JW; Huffaker DL Nanotechnology; 2014 Nov; 25(44):445402. PubMed ID: 25319397 [TBL] [Abstract][Full Text] [Related]
17. Vertical ordering and electronic coupling in bilayer nanoscale InAs/GaAs quantum dots separated by a thin spacer layer. Chakrabarti S; Halder N; Sengupta S; Ghosh S; Mishima TD; Stanley CR Nanotechnology; 2008 Dec; 19(50):505704. PubMed ID: 19942781 [TBL] [Abstract][Full Text] [Related]
18. Effects of in situ annealing of GaAs(100) substrates on the subsequent growth of InAs quantum dots by molecular beam epitaxy. Morales-Cortés H; Mejía-García C; Méndez-García VH; Vázquez-Cortés D; Rojas-Ramírez JS; Contreras-Guerrero R; Ramírez-López M; Martínez-Velis I; López-López M Nanotechnology; 2010 Apr; 21(13):134012. PubMed ID: 20208110 [TBL] [Abstract][Full Text] [Related]
19. Enhancement in electro-optic performance of InAlGaAs/GaAs quantum dot lasers by ex situ thermal annealing. You W; Arefin R; Uzgur F; Lee S; Addamane SJ; Liang B; Arafin S Opt Lett; 2023 Apr; 48(7):1938-1941. PubMed ID: 37221804 [TBL] [Abstract][Full Text] [Related]
20. Enhanced temperature stability of threshold current of InAs/GaAs quantum dot lasers by AlGaAs lateral potential barrier layers. Kakuda M; Morais N; Kwoen J; Arakawa Y Opt Express; 2023 Sep; 31(19):31243-31252. PubMed ID: 37710648 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]