These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 21126008)

  • 1. Optimization of adsorption of tea polyphenols into oat β-glucan using response surface methodology.
    Wu Z; Li H; Ming J; Zhao G
    J Agric Food Chem; 2011 Jan; 59(1):378-85. PubMed ID: 21126008
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optimization of theaflavin biosynthesis from tea polyphenols using an immobilized enzyme system and response surface methodology.
    Tu YY; Xu XQ; Xia HL; Watanabe N
    Biotechnol Lett; 2005 Feb; 27(4):269-74. PubMed ID: 15742149
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of molecular structure of polyphenols on their noncovalent interactions with oat β-glucan.
    Wang Y; Liu J; Chen F; Zhao G
    J Agric Food Chem; 2013 May; 61(19):4533-8. PubMed ID: 23647238
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optimum extraction process of polyphenols from the bark of Phyllanthus emblica L. based on the response surface methodology.
    Yang L; Jiang JG; Li WF; Chen J; Wang DY; Zhu L
    J Sep Sci; 2009 May; 32(9):1437-44. PubMed ID: 19350583
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization and antioxidant activity of the complex of tea polyphenols and oat β-glucan.
    Wu Z; Ming J; Gao R; Wang Y; Liang Q; Yu H; Zhao G
    J Agric Food Chem; 2011 Oct; 59(19):10737-46. PubMed ID: 21892831
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microwave-assisted water extraction of green tea polyphenols.
    Nkhili E; Tomao V; El Hajji H; El Boustani ES; Chemat F; Dangles O
    Phytochem Anal; 2009; 20(5):408-15. PubMed ID: 19609884
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rejected tea as a potential low-cost adsorbent for the removal of methylene blue.
    Nasuha N; Hameed BH; Din AT
    J Hazard Mater; 2010 Mar; 175(1-3):126-32. PubMed ID: 19879046
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microwave heating of tea residue yields polysaccharides, polyphenols, and plant biopolyester.
    Tsubaki S; Iida H; Sakamoto M; Azuma J
    J Agric Food Chem; 2008 Dec; 56(23):11293-9. PubMed ID: 18998700
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Adsorption of phenol from aqueous solution by using carbonised beet pulp.
    Dursun G; Ciçek H; Dursun AY
    J Hazard Mater; 2005 Oct; 125(1-3):175-82. PubMed ID: 15990225
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Novel total antioxidant capacity index for dietary polyphenols and vitamins C and E, using their cupric ion reducing capability in the presence of neocuproine: CUPRAC method.
    Apak R; Güçlü K; Ozyürek M; Karademir SE
    J Agric Food Chem; 2004 Dec; 52(26):7970-81. PubMed ID: 15612784
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spent tea leaves: a new non-conventional and low-cost adsorbent for removal of basic dye from aqueous solutions.
    Hameed BH
    J Hazard Mater; 2009 Jan; 161(2-3):753-9. PubMed ID: 18499346
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Use of agricultural waste sugar beet pulp for the removal of Gemazol turquoise blue-G reactive dye from aqueous solution.
    Aksu Z; Isoglu IA
    J Hazard Mater; 2006 Sep; 137(1):418-30. PubMed ID: 16603311
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Adsorption of phenol on formaldehyde-pretreated Pinus pinaster bark: equilibrium and kinetics.
    Vázquez G; González-Alvarez J; García AI; Freire MS; Antorrena G
    Bioresour Technol; 2007 May; 98(8):1535-40. PubMed ID: 16935496
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Removal of Pb(II) ions from aqueous solutions by sulphuric acid-treated wheat bran.
    Ozer A
    J Hazard Mater; 2007 Mar; 141(3):753-61. PubMed ID: 16938389
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Oxidative deamination of benzylamine and lysine residue in bovine serum albumin by green tea, black tea, and coffee.
    Akagawa M; Shigemitsu T; Suyama K
    J Agric Food Chem; 2005 Oct; 53(20):8019-24. PubMed ID: 16190665
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Removal of Pb(II) from aqueous solution on chitosan/TiO(2) hybrid film.
    Tao Y; Ye L; Pan J; Wang Y; Tang B
    J Hazard Mater; 2009 Jan; 161(2-3):718-22. PubMed ID: 18495341
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Removal of methylene blue from aqueous solution by dehydrated wheat bran carbon.
    Ozer A; Dursun G
    J Hazard Mater; 2007 Jul; 146(1-2):262-9. PubMed ID: 17204366
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Isotherm and kinetics study for acrylic acid removal using powdered activated carbon.
    Kumar A; Prasad B; Mishra IM
    J Hazard Mater; 2010 Apr; 176(1-3):774-83. PubMed ID: 20018446
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Adsorption characteristics of bisphenol-A in aqueous solutions onto hydrophobic zeolite.
    Tsai WT; Hsu HC; Su TY; Lin KY; Lin CM
    J Colloid Interface Sci; 2006 Jul; 299(2):513-9. PubMed ID: 16631189
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Beta-D-glucosidase-catalyzed deglucosidation of phenylpropanoid amides of 5-hydroxytryptamine glucoside in safflower seed extracts optimized by response surface methodology.
    Jin QZ; Zou XQ; Shan L; Wang XG; Qiu AY
    J Agric Food Chem; 2010 Jan; 58(1):155-60. PubMed ID: 19911845
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.