BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 21126021)

  • 1. Formation of arginine modifications in a model system of Nα-tert-butoxycarbonyl (Boc)-arginine with methylglyoxal.
    Klöpfer A; Spanneberg R; Glomb MA
    J Agric Food Chem; 2011 Jan; 59(1):394-401. PubMed ID: 21126021
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Protein modification by methylglyoxal: chemical nature and synthetic mechanism of a major fluorescent adduct.
    Shipanova IN; Glomb MA; Nagaraj RH
    Arch Biochem Biophys; 1997 Aug; 344(1):29-36. PubMed ID: 9244378
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Methylglyoxal modification of protein. Chemical and immunochemical characterization of methylglyoxal-arginine adducts.
    Oya T; Hattori N; Mizuno Y; Miyata S; Maeda S; Osawa T; Uchida K
    J Biol Chem; 1999 Jun; 274(26):18492-502. PubMed ID: 10373458
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Non-enzymatic model glycation reactions--a comprehensive study of the reactivity of a modified arginine with aldehydic and diketonic dicarbonyl compounds by electrospray mass spectrometry.
    Saraiva MA; Borges CM; Florêncio MH
    J Mass Spectrom; 2006 Jun; 41(6):755-70. PubMed ID: 16646000
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Methylglyoxal in food and living organisms.
    Nemet I; Varga-Defterdarović L; Turk Z
    Mol Nutr Food Res; 2006 Dec; 50(12):1105-17. PubMed ID: 17103372
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Model studies on the influence of high hydrostatic pressure on the formation of glycated arginine modifications at elevated temperatures.
    Alt N; Schieberle P
    J Agric Food Chem; 2005 Jul; 53(14):5789-97. PubMed ID: 15998150
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Novel amino acid metabolite produced by Streptomyces sp.: I. Taxonomy, isolation, and structural elucidation.
    Tajika T; Bando I; Furuta T; Moriya N; Koshino H; Uramoto M
    Biosci Biotechnol Biochem; 1997 Jun; 61(6):1007-10. PubMed ID: 9214763
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Site-selective modifications of arginine residues in human hemoglobin induced by methylglyoxal.
    Gao Y; Wang Y
    Biochemistry; 2006 Dec; 45(51):15654-60. PubMed ID: 17176087
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Detection and identification of arginine modifications on methylglyoxal-modified ribonuclease by mass spectrometric analysis.
    Brock JW; Cotham WE; Thorpe SR; Baynes JW; Ames JM
    J Mass Spectrom; 2007 Jan; 42(1):89-100. PubMed ID: 17143934
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A novel lipid hydroperoxide-derived modification to arginine.
    Oe T; Lee SH; Silva Elipe MV; Arison BH; Blair IA
    Chem Res Toxicol; 2003 Dec; 16(12):1598-605. PubMed ID: 14680374
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Peptide mapping of human serum albumin modified minimally by methylglyoxal in vitro and in vivo.
    Ahmed N; Thornalley PJ
    Ann N Y Acad Sci; 2005 Jun; 1043():260-6. PubMed ID: 16037246
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synthetic approaches to N(delta)-methylated L-arginine, N(omega)-hydroxy-L-arginine, L-citrulline, and N(delta)-cyano-L-ornithine.
    Schade D; Töpker-Lehmann K; Kotthaus J; Clement B
    J Org Chem; 2008 Feb; 73(3):1025-30. PubMed ID: 18179234
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Binding and modification of proteins by methylglyoxal under physiological conditions. A kinetic and mechanistic study with N alpha-acetylarginine, N alpha-acetylcysteine, and N alpha-acetyllysine, and bovine serum albumin.
    Lo TW; Westwood ME; McLellan AC; Selwood T; Thornalley PJ
    J Biol Chem; 1994 Dec; 269(51):32299-305. PubMed ID: 7798230
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chromatographic quantification of argpyrimidine, a methylglyoxal-derived product in tissue proteins: comparison with pentosidine.
    Wilker SC; Chellan P; Arnold BM; Nagaraj RH
    Anal Biochem; 2001 Mar; 290(2):353-8. PubMed ID: 11237339
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification of N7-(1-carboxyethyl)-arginine, a novel posttranslational protein modification of arginine formed at high hydrostatic pressure.
    Alt N; Schieberle P
    Ann N Y Acad Sci; 2005 Jun; 1043():55-8. PubMed ID: 16037221
    [TBL] [Abstract][Full Text] [Related]  

  • 16. N-Terminal pyrazinones: a new class of peptide-bound advanced glycation end-products.
    Krause R; Kühn J; Penndorf I; Knoll K; Henle T
    Amino Acids; 2004 Aug; 27(1):9-18. PubMed ID: 15309567
    [TBL] [Abstract][Full Text] [Related]  

  • 17. N(delta)-(5-hydroxy-4,6-dimethylpyrimidine-2-yl)-l-ornithine, a novel methylglyoxal-arginine modification in beer.
    Glomb MA; Rösch D; Nagaraj RH
    J Agric Food Chem; 2001 Jan; 49(1):366-72. PubMed ID: 11170600
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effect of pH and amino acids on the formation of methylglyoxal in a glucose-amino acid model system.
    Yu P; Xu XB; Yu SJ
    J Sci Food Agric; 2017 Aug; 97(10):3159-3165. PubMed ID: 27885683
    [TBL] [Abstract][Full Text] [Related]  

  • 19. N-Terminal 2,3-diaminopropionic acid (Dap) peptides as efficient methylglyoxal scavengers to inhibit advanced glycation endproduct (AGE) formation.
    Sasaki NA; Garcia-Alvarez MC; Wang Q; Ermolenko L; Franck G; Nhiri N; Martin MT; Audic N; Potier P
    Bioorg Med Chem; 2009 Mar; 17(6):2310-20. PubMed ID: 19261478
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Formation of N delta-cyanoornithine from NG-hydroxy-L-arginine and hydrogen peroxide by neuronal nitric oxide synthase: implications for mechanism.
    Clague MJ; Wishnok JS; Marletta MA
    Biochemistry; 1997 Nov; 36(47):14465-73. PubMed ID: 9398165
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.