BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 21126021)

  • 21. Towards the control and inhibition of glycation-the role of the guanidine reaction center with aldehydic and diketonic dicarbonyls. A mass spectrometry study.
    Saraiva MA; Borges CM; Florêncio MH
    J Mass Spectrom; 2006 Oct; 41(10):1346-68. PubMed ID: 17039581
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Identification of adducts formed in the reactions of malonaldehyde-glyoxal and malonaldehyde-methylglyoxal with adenosine and calf thymus DNA.
    Pluskota-Karwatka D; Pawłowicz AJ; Bruszyńska M; Greszkiewicz A; Latajka R; Kronberg L
    Chem Biodivers; 2010 Apr; 7(4):959-74. PubMed ID: 20397229
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Studies on the Formation of 3-Deoxyglucosone- and Methylglyoxal-Derived Hydroimidazolones of Creatine during Heat Treatment of Meat.
    Treibmann S; Spengler F; Degen J; Löbner J; Henle T
    J Agric Food Chem; 2019 May; 67(20):5874-5881. PubMed ID: 31050431
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Thermodynamics and kinetics of methylglyoxal dimer formation: a computational study.
    Krizner HE; De Haan DO; Kua J
    J Phys Chem A; 2009 Jun; 113(25):6994-7001. PubMed ID: 19480424
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Enhancement of chaperone function of alpha-crystallin by methylglyoxal modification.
    Nagaraj RH; Oya-Ito T; Padayatti PS; Kumar R; Mehta S; West K; Levison B; Sun J; Crabb JW; Padival AK
    Biochemistry; 2003 Sep; 42(36):10746-55. PubMed ID: 12962499
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Dual effects of phloretin and phloridzin on the glycation induced by methylglyoxal in model systems.
    Ma J; Peng X; Zhang X; Chen F; Wang M
    Chem Res Toxicol; 2011 Aug; 24(8):1304-11. PubMed ID: 21696151
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Acetyl radical production by the methylglyoxal-peroxynitrite system: a possible route for L-lysine acetylation.
    Massari J; Tokikawa R; Zanolli L; Tavares MF; Assunção NA; Bechara EJ
    Chem Res Toxicol; 2010 Nov; 23(11):1762-70. PubMed ID: 20923167
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Methylglyoxal-derived beta-carbolines formed from tryptophan and its derivates in the Maillard reaction.
    Nemet I; Varga-Defterdarović L
    Amino Acids; 2007 Feb; 32(2):291-3. PubMed ID: 16729192
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Formation of carcinogenic 4(5)-methylimidazole in Maillard reaction systems.
    Moon JK; Shibamoto T
    J Agric Food Chem; 2011 Jan; 59(2):615-8. PubMed ID: 21186780
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Isolation and partial characterization of four fluorophores formed by nonenzymatic browning of methylglyoxal and glutamine-derived ammonia.
    Niquet C; Pilard S; Mathiron D; Tessier FJ
    Ann N Y Acad Sci; 2008 Apr; 1126():158-61. PubMed ID: 18448810
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Peptide mapping identifies hotspot site of modification in human serum albumin by methylglyoxal involved in ligand binding and esterase activity.
    Ahmed N; Dobler D; Dean M; Thornalley PJ
    J Biol Chem; 2005 Feb; 280(7):5724-32. PubMed ID: 15557329
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Spectroscopic studies of methylglyoxal in water and dimethylsulfoxide.
    Nemet I; Vikić-Topić D; Varga-Defterdarović L
    Bioorg Chem; 2004 Dec; 32(6):560-70. PubMed ID: 15530996
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Protein glycation in Saccharomyces cerevisiae. Argpyrimidine formation and methylglyoxal catabolism.
    Gomes RA; Sousa Silva M; Vicente Miranda H; Ferreira AE; Cordeiro CA; Freire AP
    FEBS J; 2005 Sep; 272(17):4521-31. PubMed ID: 16128820
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Methylglyoxal-modified arginine residues--a signal for receptor-mediated endocytosis and degradation of proteins by monocytic THP-1 cells.
    Westwood ME; Argirov OK; Abordo EA; Thornalley PJ
    Biochim Biophys Acta; 1997 Mar; 1356(1):84-94. PubMed ID: 9099994
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Isolation and characterization of glyoxal-arginine modifications.
    Glomb MA; Lang G
    J Agric Food Chem; 2001 Mar; 49(3):1493-501. PubMed ID: 11312885
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Chemical modification of proteins by methylglyoxal.
    Degenhardt TP; Thorpe SR; Baynes JW
    Cell Mol Biol (Noisy-le-grand); 1998 Nov; 44(7):1139-45. PubMed ID: 9846896
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Formation of glyoxal, methylglyoxal and 3-deoxyglucosone in the glycation of proteins by glucose.
    Thornalley PJ; Langborg A; Minhas HS
    Biochem J; 1999 Nov; 344 Pt 1(Pt 1):109-16. PubMed ID: 10548540
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The other side of the Maillard reaction.
    Nagaraj RH; Biswas A; Miller A; Oya-Ito T; Bhat M
    Ann N Y Acad Sci; 2008 Apr; 1126():107-12. PubMed ID: 18448802
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Development of a conventional immunochemical detection system for determination of N
    Yamaguchi H; Nagai M; Sugawa H; Yasuda H; Nagai R
    Glycoconj J; 2021 Jun; 38(3):293-301. PubMed ID: 33241449
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Reactivity of thermally treated α-dicarbonyl compounds.
    Pfeifer YV; Haase PT; Kroh LW
    J Agric Food Chem; 2013 Mar; 61(12):3090-6. PubMed ID: 23432453
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.