BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

213 related articles for article (PubMed ID: 2112610)

  • 21. The slow step of folding of Staphylococcus aureus PC1 beta-lactamase involves the collapse of a surface loop rate limited by the trans to cis isomerization of a non-proline peptide bond.
    Wheeler KA; Hawkins AR; Pain R; Virden R
    Proteins; 1998 Dec; 33(4):550-7. PubMed ID: 9849938
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Unfolding and refolding pathways of a major kinetic trap in the oxidative folding of alpha-lactalbumin.
    Salamanca S; Chang JY
    Biochemistry; 2005 Jan; 44(2):744-50. PubMed ID: 15641801
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Transient association of the first intermediate during the refolding of bovine carbonic anhydrase B.
    Cleland JL; Wang DI
    Biotechnol Prog; 1992; 8(2):97-103. PubMed ID: 1368009
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Proline isomerization-independent accumulation of an early intermediate and heterogeneity of the folding pathways of a mixed alpha/beta protein, Escherichia coli thioredoxin.
    Georgescu RE; Li JH; Goldberg ME; Tasayco ML; Chaffotte AF
    Biochemistry; 1998 Jul; 37(28):10286-97. PubMed ID: 9665737
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effect of multiple prolyl isomerization reactions on the stability and folding kinetics of the notch ankyrin domain: experiment and theory.
    Bradley CM; Barrick D
    J Mol Biol; 2005 Sep; 352(2):253-65. PubMed ID: 16054647
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Temperature-jump induced fast refolding of cold-unfolded protein.
    Nölting B
    Biochem Biophys Res Commun; 1996 Oct; 227(3):903-8. PubMed ID: 8886028
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Kinetic analysis of the unfolding and refolding of ribonuclease T1 by a stopped-flow double-mixing technique.
    Mayr LM; Odefey C; Schutkowski M; Schmid FX
    Biochemistry; 1996 Apr; 35(17):5550-61. PubMed ID: 8611546
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Stability and folding kinetics of ribonuclease T1 are strongly altered by the replacement of cis-proline 39 with alanine.
    Mayr LM; Landt O; Hahn U; Schmid FX
    J Mol Biol; 1993 Jun; 231(3):897-912. PubMed ID: 8515459
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The scFv fragment of the antibody hu4D5-8: evidence for early premature domain interaction in refolding.
    Jäger M; Gehrig P; Plückthun A
    J Mol Biol; 2001 Feb; 305(5):1111-29. PubMed ID: 11162118
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Circular dichroism evidence for the presence of burst-phase intermediates on the conformational folding pathway of ribonuclease A.
    Houry WA; Rothwarf DM; Scheraga HA
    Biochemistry; 1996 Aug; 35(31):10125-33. PubMed ID: 8756476
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Molten globule-like state of bovine carbonic anhydrase in the presence of acetonitrile.
    Safarian S; Saffarzadeh M; Zargar SJ; Moosavi-Movahedi AA
    J Biochem; 2006 Jun; 139(6):1025-33. PubMed ID: 16788053
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Role of two proline-containing turns in the folding of porcine ribonuclease.
    Lang K; Schmid FX
    J Mol Biol; 1990 Mar; 212(1):185-96. PubMed ID: 2319596
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Comparative studies of the artificial chaperone-assisted refolding of thermally denatured bovine carbonic anhydrase using different capturing ionic detergents and beta-cyclodextrin.
    Yazdanparast R; Khodarahmi R; Soori E
    Arch Biochem Biophys; 2005 May; 437(2):178-85. PubMed ID: 15850557
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Water-protein interactions in the molten-globule state of carbonic anhydrase b: an NMR spin-diffusion study.
    Kutyshenko VP; Cortijo M
    Protein Sci; 2000 Aug; 9(8):1540-7. PubMed ID: 10975575
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Circumnavigating misfolding traps in the energy landscape through protein engineering: suppression of molten globule and aggregation in carbonic anhydrase.
    Karlsson M; Mårtensson LG; Olofsson P; Carlsson U
    Biochemistry; 2004 Jun; 43(21):6803-7. PubMed ID: 15157114
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Equilibrium and kinetic folding of hen egg-white lysozyme under acidic conditions.
    Sasahara K; Demura M; Nitta K
    Proteins; 2002 Dec; 49(4):472-82. PubMed ID: 12402357
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Characterization of the folding and unfolding reactions of single-chain monellin: evidence for multiple intermediates and competing pathways.
    Patra AK; Udgaonkar JB
    Biochemistry; 2007 Oct; 46(42):11727-43. PubMed ID: 17902706
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Initial denaturing conditions influence the slow folding phase of acylphosphatase associated with proline isomerization.
    Pertinhez TA; Hamada D; Smith LJ; Chiti F; Taddei N; Stefani M; Dobson CM
    Protein Sci; 2000 Aug; 9(8):1466-73. PubMed ID: 10975568
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Proline isomerization in bovine pancreatic ribonuclease A. 1. Unfolding conditions.
    Juminaga D; Wedemeyer WJ; Scheraga HA
    Biochemistry; 1998 Aug; 37(33):11614-20. PubMed ID: 9708999
    [TBL] [Abstract][Full Text] [Related]  

  • 40. 'Molten-globule' state accumulates in carbonic anhydrase folding.
    Dolgikh DA; Kolomiets AP; Bolotina IA; Ptitsyn OB
    FEBS Lett; 1984 Jan; 165(1):88-92. PubMed ID: 6420185
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.