These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
320 related articles for article (PubMed ID: 2112638)
1. A validation and comparison study of two metabolic monitors. Phang PT; Rich T; Ronco J JPEN J Parenter Enteral Nutr; 1990; 14(3):259-61. PubMed ID: 2112638 [TBL] [Abstract][Full Text] [Related]
2. In vitro evaluation of a compact metabolic measurement instrument. Weissman C; Sardar A; Kemper M JPEN J Parenter Enteral Nutr; 1990; 14(2):216-21. PubMed ID: 2112632 [TBL] [Abstract][Full Text] [Related]
3. Evaluation of methods for indirect calorimetry with a ventilated lung model. Braun U; Zundel J; Freiboth K; Weyland W; Turner E; Heidelmeyer CF; Hellige G Intensive Care Med; 1989; 15(3):196-202. PubMed ID: 2500469 [TBL] [Abstract][Full Text] [Related]
4. A Comparison of Carbon Dioxide Elimination Measurements Between a Portable Indirect Calorimeter and Volumetric Capnography Monitor: An In Vitro Simulation. Smallwood CD; Martinez EE; Mehta NM Respir Care; 2016 Mar; 61(3):354-8. PubMed ID: 26715770 [TBL] [Abstract][Full Text] [Related]
5. Evaluation of metabolic measuring instruments for use in critically ill patients. Makita K; Nunn JF; Royston B Crit Care Med; 1990 Jun; 18(6):638-44. PubMed ID: 2111757 [TBL] [Abstract][Full Text] [Related]
6. Precision and accuracy in a metabolic monitor for indirect calorimetry. Wells JC; Fuller NJ Eur J Clin Nutr; 1998 Jul; 52(7):536-40. PubMed ID: 9683338 [TBL] [Abstract][Full Text] [Related]
7. In vitro validation of a metabolic monitor for gas exchange measurements in ventilated neonates. Behrends M; Kernbach M; Bräuer A; Braun U; Peters J; Weyland W Intensive Care Med; 2001 Jan; 27(1):228-35. PubMed ID: 11280640 [TBL] [Abstract][Full Text] [Related]
8. A water-sealed indirect calorimeter for measurement of oxygen consumption (VO2), carbon dioxide production (VCO2), and energy expenditure in infants. Dechert RE; Wesley JR; Schafer LE; LaMond S; Nicks J; Coran AG; Bartlett RH JPEN J Parenter Enteral Nutr; 1988; 12(3):256-9. PubMed ID: 3134559 [TBL] [Abstract][Full Text] [Related]
9. Comparison of face mask, head hood, and canopy for breath sampling in flow-through indirect calorimetry to measure oxygen consumption and carbon dioxide production of preterm infants < 1500 grams. Bauer K; Pasel K; Uhrig C; Sperling P; Versmold H Pediatr Res; 1997 Jan; 41(1):139-44. PubMed ID: 8979303 [TBL] [Abstract][Full Text] [Related]
10. Effect of FiO Ferreruela M; Raurich JM; Llompart-Pou JA; Colomar A; Ayestarán I Med Intensiva; 2017 Nov; 41(8):461-467. PubMed ID: 28283325 [TBL] [Abstract][Full Text] [Related]
11. Measuring energy expenditure in the intensive care unit: a comparison of indirect calorimetry by E-sCOVX and Quark RMR with Deltatrac II in mechanically ventilated critically ill patients. Rehal MS; Fiskaare E; Tjäder I; Norberg Å; Rooyackers O; Wernerman J Crit Care; 2016 Mar; 20():54. PubMed ID: 26951095 [TBL] [Abstract][Full Text] [Related]
12. Effects of gas leak around endotracheal tubes on indirect calorimetry measurement. Dietrich KA; Romero MD; Conrad SA JPEN J Parenter Enteral Nutr; 1990; 14(4):408-13. PubMed ID: 2119449 [TBL] [Abstract][Full Text] [Related]
13. Methods to validate the accuracy of an indirect calorimeter in the in-vitro setting. Oshima T; Ragusa M; Graf S; Dupertuis YM; Heidegger CP; Pichard C Clin Nutr ESPEN; 2017 Dec; 22():71-75. PubMed ID: 29415838 [TBL] [Abstract][Full Text] [Related]
14. Validation of an indirect calorimeter using n-of-1 methodology. Frankenfield DC; Ashcraft CM; Wood C; Chinchilli VM Clin Nutr; 2016 Feb; 35(1):163-168. PubMed ID: 25707909 [TBL] [Abstract][Full Text] [Related]
15. An in vitro evaluation of an instrument designed to measure oxygen consumption and carbon dioxide production during mechanical ventilation. Weissman C; Sardar A; Kemper M Crit Care Med; 1994 Dec; 22(12):1995-200. PubMed ID: 7988139 [TBL] [Abstract][Full Text] [Related]
16. Validation of a portable indirect calorimetry system for measurement of energy expenditure in sick preterm infants. Shortland GJ; Fleming PJ; Walter JH Arch Dis Child; 1992 Oct; 67(10 Spec No):1207-11. PubMed ID: 1444562 [TBL] [Abstract][Full Text] [Related]
17. Evaluation of three indirect calorimetry devices in mechanically ventilated patients: which device compares best with the Deltatrac II(®)? A prospective observational study. Graf S; Karsegard VL; Viatte V; Heidegger CP; Fleury Y; Pichard C; Genton L Clin Nutr; 2015 Feb; 34(1):60-5. PubMed ID: 24485773 [TBL] [Abstract][Full Text] [Related]
18. Effects of ventilator resetting on indirect calorimetry measurement in the critically ill surgical patient. Brandi LS; Bertolini R; Santini L; Cavani S Crit Care Med; 1999 Mar; 27(3):531-9. PubMed ID: 10199532 [TBL] [Abstract][Full Text] [Related]
19. Clinical validation of the Deltatrac monitoring system in mechanically ventilated patients. Tissot S; Delafosse B; Bertrand O; Bouffard Y; Viale JP; Annat G Intensive Care Med; 1995 Feb; 21(2):149-53. PubMed ID: 7775696 [TBL] [Abstract][Full Text] [Related]
20. Indirect calorimetry in humans: a postcalorimetric evaluation procedure for correction of metabolic monitor variability. Schadewaldt P; Nowotny B; Strassburger K; Kotzka J; Roden M Am J Clin Nutr; 2013 Apr; 97(4):763-73. PubMed ID: 23446893 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]