These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

86 related articles for article (PubMed ID: 21126567)

  • 1. Mitochondrial membrane potential measurement of H9c2 cells grown in high-glucose and galactose-containing media does not provide additional predictivity towards mitochondrial assessment.
    Rana P; Nadanaciva S; Will Y
    Toxicol In Vitro; 2011 Mar; 25(2):580-7. PubMed ID: 21126567
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Circumventing the Crabtree effect: replacing media glucose with galactose increases susceptibility of HepG2 cells to mitochondrial toxicants.
    Marroquin LD; Hynes J; Dykens JA; Jamieson JD; Will Y
    Toxicol Sci; 2007 Jun; 97(2):539-47. PubMed ID: 17361016
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biguanide-induced mitochondrial dysfunction yields increased lactate production and cytotoxicity of aerobically-poised HepG2 cells and human hepatocytes in vitro.
    Dykens JA; Jamieson J; Marroquin L; Nadanaciva S; Billis PA; Will Y
    Toxicol Appl Pharmacol; 2008 Dec; 233(2):203-10. PubMed ID: 18817800
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Assessment of mitochondrial toxicity in HepG2 cells cultured in high-glucose- or galactose-containing media.
    Swiss R; Will Y
    Curr Protoc Toxicol; 2011 Aug; Chapter 2():Unit2.20. PubMed ID: 21818751
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A high-throughput dual parameter assay for assessing drug-induced mitochondrial dysfunction provides additional predictivity over two established mitochondrial toxicity assays.
    Hynes J; Nadanaciva S; Swiss R; Carey C; Kirwan S; Will Y
    Toxicol In Vitro; 2013 Mar; 27(2):560-9. PubMed ID: 23147640
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High concordance of drug-induced human hepatotoxicity with in vitro cytotoxicity measured in a novel cell-based model using high content screening.
    O'Brien PJ; Irwin W; Diaz D; Howard-Cofield E; Krejsa CM; Slaughter MR; Gao B; Kaludercic N; Angeline A; Bernardi P; Brain P; Hougham C
    Arch Toxicol; 2006 Sep; 80(9):580-604. PubMed ID: 16598496
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Validation of a HTS-amenable assay to detect drug-induced mitochondrial toxicity in the absence and presence of cell death.
    Swiss R; Niles A; Cali JJ; Nadanaciva S; Will Y
    Toxicol In Vitro; 2013 Sep; 27(6):1789-97. PubMed ID: 23726864
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A systematic assessment of mitochondrial function identified novel signatures for drug-induced mitochondrial disruption in cells.
    Li N; Oquendo E; Capaldi RA; Robinson JP; He YD; Hamadeh HK; Afshari CA; Lightfoot-Dunn R; Narayanan PK
    Toxicol Sci; 2014 Nov; 142(1):261-73. PubMed ID: 25163676
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Estradiol attenuates mitochondrial depolarization in polyol-stressed lens epithelial cells.
    Flynn JM; Cammarata PR
    Mol Vis; 2006 Apr; 12():271-82. PubMed ID: 16617294
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Aroclor 1254 induced cytotoxicity and mitochondrial dysfunction in isolated rat hepatocytes.
    Aly HA; Domènech O
    Toxicology; 2009 Aug; 262(3):175-83. PubMed ID: 19486918
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of human-induced pluripotent stem cell-derived cardiomyocytes: bioenergetics and utilization in safety screening.
    Rana P; Anson B; Engle S; Will Y
    Toxicol Sci; 2012 Nov; 130(1):117-31. PubMed ID: 22843568
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Functional modulation of mitochondria by eicosapentaenoic acid provides protection against ceramide toxicity to C6 glioma cells.
    Jeng JY; Lee WH; Tsai YH; Chen CY; Chao SY; Hsieh RH
    J Agric Food Chem; 2009 Dec; 57(24):11455-62. PubMed ID: 19921818
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mitochondrial superoxide plays a crucial role in the development of mitochondrial dysfunction during high glucose exposure in rat renal proximal tubular cells.
    Munusamy S; MacMillan-Crow LA
    Free Radic Biol Med; 2009 Apr; 46(8):1149-57. PubMed ID: 19439219
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modulation of mitochondrial bioenergetics in a skeletal muscle cell line model of mitochondrial toxicity.
    Dott W; Mistry P; Wright J; Cain K; Herbert KE
    Redox Biol; 2014; 2():224-33. PubMed ID: 24494197
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Novel neuroprotective compound SCH-20148 rescues thymocytes and SH-SY5Y cells from thapsigargin-induced mitochondrial membrane potential reduction and cell death.
    Muramatsu Y; Maemoto T; Iwashita A; Matsuoka N
    Eur J Pharmacol; 2007 Jun; 563(1-3):40-8. PubMed ID: 17343843
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mitochondrial dysfunction occurs before transport or tight junction deficits in biliary epithelial cells exposed to bile from methylenedianiline-treated rats.
    Santa Cruz V; Dugas TR; Kanz MF
    Toxicol Sci; 2005 Mar; 84(1):129-38. PubMed ID: 15601676
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Application of a high-content multiparameter cytotoxicity assay to prioritize compounds based on toxicity potential in humans.
    Abraham VC; Towne DL; Waring JF; Warrior U; Burns DJ
    J Biomol Screen; 2008 Jul; 13(6):527-37. PubMed ID: 18566484
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mitochondrial dysfunction is induced by high levels of glucose and free fatty acids in 3T3-L1 adipocytes.
    Gao CL; Zhu C; Zhao YP; Chen XH; Ji CB; Zhang CM; Zhu JG; Xia ZK; Tong ML; Guo XR
    Mol Cell Endocrinol; 2010 May; 320(1-2):25-33. PubMed ID: 20144685
    [TBL] [Abstract][Full Text] [Related]  

  • 19. N-acetylcysteine prevents glucose/glucose oxidase-induced oxidative stress, mitochondrial damage and apoptosis in H9c2 cells.
    Kumar S; Sitasawad SL
    Life Sci; 2009 Mar; 84(11-12):328-36. PubMed ID: 19159629
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of IL-1beta on survival and energy metabolism of R28 and RGC-5 retinal neurons.
    Abcouwer SF; Shanmugam S; Gomez PF; Shushanov S; Barber AJ; Lanoue KF; Quinn PG; Kester M; Gardner TW
    Invest Ophthalmol Vis Sci; 2008 Dec; 49(12):5581-92. PubMed ID: 19037001
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.