These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 21127540)

  • 21. Scattering of electromagnetic radiation by multilayered spheroidal particles: recursive procedure.
    Gurwich I; Kleiman M; Shiloah N; Cohen A
    Appl Opt; 2000 Jan; 39(3):470-7. PubMed ID: 18337916
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Internal, near-surface, and scattered electromagnetic fields for a layered spheroid with arbitrary illumination.
    Barton JP
    Appl Opt; 2001 Jul; 40(21):3598-607. PubMed ID: 18360389
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Systematic studies of light scattering. 1: Particle shape.
    Schuerman DW; Wang RT; Gustafson BA; Schaefer RW
    Appl Opt; 1981 Dec; 20(23):4039-50. PubMed ID: 20372321
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Internal and near-surface electromagnetic fields for an absorbing spheroidal particle with arbitrary illumination.
    Barton JP
    Appl Opt; 1995 Dec; 34(36):8472-3. PubMed ID: 21068967
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Scattering of electromagnetic waves from dense distributions of spheroidal particles based on Monte Carlo simulations.
    Tsang L; Ding KH; Shih SE; Kong JA
    J Opt Soc Am A Opt Image Sci Vis; 1998 Oct; 15(10):2660-9. PubMed ID: 9768510
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Low-Knudsen-number photophoresis of aerosol spheroids.
    Ou CL; Keh HJ
    J Colloid Interface Sci; 2005 Feb; 282(1):69-79. PubMed ID: 15576082
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Resonances in electromagnetic scattering by objects with negative absorption.
    Kerker M
    Appl Opt; 1979 Apr; 18(8):1180-9. PubMed ID: 20208905
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Electromagnetic scattering by arbitrarily oriented ice cylinders.
    Liou KN
    Appl Opt; 1972 Mar; 11(3):667-74. PubMed ID: 20111565
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Light scattering by polydispersions of randomly oriented spheroids with sizes comparable to wavelengths of observation.
    Mishchenko MI; Travis LD
    Appl Opt; 1994 Oct; 33(30):7206-25. PubMed ID: 20941276
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Drag force on a porous, non-homogeneous spheroidal floc in a uniform flow field.
    Hsu JP; Hsieh YH
    J Colloid Interface Sci; 2003 Mar; 259(2):301-8. PubMed ID: 16256510
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Efficiency of light-scattering aerosol particle counters.
    Pinnick RG; Hofmann DJ
    Appl Opt; 1973 Nov; 12(11):2593-7. PubMed ID: 20125834
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Electromagnetic scattering by an aggregate of spheres.
    Xu YL
    Appl Opt; 1995 Jul; 34(21):4573-88. PubMed ID: 21052290
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Single scattering of light by circular cylinders.
    Kuik F; de Haan JF; Hovenier JW
    Appl Opt; 1994 Jul; 33(21):4906-18. PubMed ID: 20935867
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Light scattering from a sliced target through use of the internal field of infinite cylinders: comparison between Mie theory and a sliced sphere.
    Cohen A; Haracz RD; Cohen LD
    Appl Opt; 1994 Mar; 33(9):1776-9. PubMed ID: 20885507
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A polarization model overcoming the geometric restrictions of the laplace solution for spheroidal cells: obtaining new equations for field-induced forces and transmembrane potential.
    Gimsa J; Wachner D
    Biophys J; 1999 Sep; 77(3):1316-26. PubMed ID: 10465744
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Internal and near-surface electromagnetic fields for a dielectric spheroid illuminated by a zero-order Bessel beam.
    Han L; Han Y; Wang J; Cui Z
    J Opt Soc Am A Opt Image Sci Vis; 2014 Sep; 31(9):1946-55. PubMed ID: 25401433
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effects of asphericity on single particle scattering.
    Latimer P; Brunsting A; Pyle BE; Moore C
    Appl Opt; 1978 Oct; 17(19):3152-8. PubMed ID: 20203940
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Approximate methods for modeling the scattering properties of nonspherical particles: evaluation of the Wentzel-Kramers-Brillouin method.
    Klett JD; Sutherland RA
    Appl Opt; 1992 Jan; 31(3):373-86. PubMed ID: 20717415
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Scattering of an electromagnetic plane wave by a sphere embedded in a cylinder.
    Mangini F; Tedeschi N
    J Opt Soc Am A Opt Image Sci Vis; 2017 May; 34(5):760-769. PubMed ID: 28463320
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Polarized light-scattering profile-advanced characterization of nonspherical particles with scanning flow cytometry.
    Strokotov DI; Moskalensky AE; Nekrasov VM; Maltsev VP
    Cytometry A; 2011 Jul; 79(7):570-9. PubMed ID: 21548080
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.