These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

82 related articles for article (PubMed ID: 21127582)

  • 1. Determination of Teflon thickness with laser speckle. I. Potential for burn depth diagnosis.
    Sadhwani A; Schomacker KT; Tearney GJ; Nishioka NS
    Appl Opt; 1996 Oct; 35(28):5727-35. PubMed ID: 21127582
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A comparison of two laser-based methods for determination of burn scar perfusion: laser Doppler versus laser speckle imaging.
    Stewart CJ; Frank R; Forrester KR; Tulip J; Lindsay R; Bray RC
    Burns; 2005 Sep; 31(6):744-52. PubMed ID: 16129229
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Preliminary study on the improvement of wound microcirculation and retrospection on several methods of the management of deep partial thickness burn wound].
    Sun YH; Yu DN; Chen X; Hu XH; Zhang GA; Yan RY; Tan FJ
    Zhonghua Shao Shang Za Zhi; 2005 Feb; 21(1):17-20. PubMed ID: 15796836
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Accuracy of early burn depth assessment by laser Doppler imaging on different days post burn.
    Hoeksema H; Van de Sijpe K; Tondu T; Hamdi M; Van Landuyt K; Blondeel P; Monstrey S
    Burns; 2009 Feb; 35(1):36-45. PubMed ID: 18952377
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In vivo burn diagnosis by camera-phone diffuse reflectance laser speckle detection.
    Ragol S; Remer I; Shoham Y; Hazan S; Willenz U; Sinelnikov I; Dronov V; Rosenberg L; Bilenca A
    Biomed Opt Express; 2016 Jan; 7(1):225-37. PubMed ID: 26819831
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Assessment of subchondral bone blood flow in the rabbit femoral condyle using the laser speckle method.
    Fukuoka S; Hotokebuchi T; Terada K; Kobara N; Fujii H; Sugioka Y; Iwamoto Y
    J Orthop Res; 1999 May; 17(3):368-75. PubMed ID: 10376725
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Portable laser speckle perfusion imaging system based on digital signal processor.
    Tang X; Feng N; Sun X; Li P; Luo Q
    Rev Sci Instrum; 2010 Dec; 81(12):125110. PubMed ID: 21198054
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Noncontact laser Doppler imaging in burn depth analysis of the extremities.
    Riordan CL; McDonough M; Davidson JM; Corley R; Perlov C; Barton R; Guy J; Nanney LB
    J Burn Care Rehabil; 2003; 24(4):177-86. PubMed ID: 14501410
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Picosecond Raman spectroscopy with a fast intensified CCD camera for depth analysis of diffusely scattering media.
    Ariese F; Meuzelaar H; Kerssens MM; Buijs JB; Gooijer C
    Analyst; 2009 Jun; 134(6):1192-7. PubMed ID: 19475147
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Use of laser speckle flowgraphy in ocular blood flow research.
    Sugiyama T; Araie M; Riva CE; Schmetterer L; Orgul S
    Acta Ophthalmol; 2010 Nov; 88(7):723-9. PubMed ID: 19725814
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The pathogenesis of burn wound conversion.
    Singh V; Devgan L; Bhat S; Milner SM
    Ann Plast Surg; 2007 Jul; 59(1):109-15. PubMed ID: 17589272
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Differentiation of superficial-partial vs. deep-partial thickness burn injuries in vivo by confocal-laser-scanning microscopy.
    Altintas MA; Altintas AA; Knobloch K; Guggenheim M; Zweifel CJ; Vogt PM
    Burns; 2009 Feb; 35(1):80-6. PubMed ID: 18691820
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluation of cytotoxicity and antimicrobial activity of Acticoat Burn Dressing for management of microbial contamination in cultured skin substitutes grafted to athymic mice.
    Supp AP; Neely AN; Supp DM; Warden GD; Boyce ST
    J Burn Care Rehabil; 2005; 26(3):238-46. PubMed ID: 15879745
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Time-resolved spatially offset Raman spectroscopy for depth analysis of diffusely scattering layers.
    Iping Petterson IE; Dvořák P; Buijs JB; Gooijer C; Ariese F
    Analyst; 2010 Dec; 135(12):3255-9. PubMed ID: 20941438
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison of Correlation between 3D Surface Roughness and Laser Speckle Pattern for Experimental Setup Using He-Ne as Laser Source and Laser Pointer as Laser Source.
    Jayabarathi SB; Ratnam MM
    Sensors (Basel); 2022 Aug; 22(16):. PubMed ID: 36015763
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Assessment of burn depth and burn wound healing potential.
    Monstrey S; Hoeksema H; Verbelen J; Pirayesh A; Blondeel P
    Burns; 2008 Sep; 34(6):761-9. PubMed ID: 18511202
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [An understanding of burn infection].
    Xu WS
    Zhonghua Shao Shang Za Zhi; 2008 Jun; 24(3):164-6. PubMed ID: 18982556
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Assessment of microcirculatory influence on cellular morphology in human burn wound healing using reflectance-mode-confocal microscopy.
    Altintas AA; Altintas MA; Ipaktchi K; Guggenheim M; Theodorou P; Amini P; Spilker G
    Wound Repair Regen; 2009; 17(4):498-504. PubMed ID: 19614915
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluation of laser-speckle contrast image analysis techniques in the cortical microcirculation of piglets.
    Domoki F; Zölei D; Oláh O; Tóth-Szuki V; Hopp B; Bari F; Smausz T
    Microvasc Res; 2012 May; 83(3):311-7. PubMed ID: 22306444
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A transmissive laser speckle imaging technique for measuring deep tissue blood flow: an example application in finger joints.
    Dunn JF; Forrester KR; Martin L; Tulip J; Bray RC
    Lasers Surg Med; 2011 Jan; 43(1):21-8. PubMed ID: 21254139
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.