These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 21127584)

  • 1. Use of artificial neural networks for Hartmann-sensor lenslet centroid estimation.
    Montera DA; Welsh BM; Roggemann MC; Ruck DW
    Appl Opt; 1996 Oct; 35(29):5747-57. PubMed ID: 21127584
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Processing wave-front-sensor slope measurements using artificial neural networks.
    Montera DA; Welsh BM; Roggemann MC; Ruck DW
    Appl Opt; 1996 Jul; 35(21):4238-51. PubMed ID: 21102833
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Prediction of wave-front sensor slope measurements with artificial neural networks.
    Montera DA; Welsh BM; Roggemann MC; Ruck DW
    Appl Opt; 1997 Jan; 36(3):675-81. PubMed ID: 18250726
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Centroid gain compensation in Shack-Hartmann adaptive optics systems with natural or laser guide star.
    Veran JP; Herriot G
    J Opt Soc Am A Opt Image Sci Vis; 2000 Aug; 17(8):1430-9. PubMed ID: 10935871
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fundamental performance comparison of a Hartmann and a shearing interferometer wave-front sensor.
    Welsh BM; Ellerbroek BL; Roggemann MC; Pennington TL
    Appl Opt; 1995 Jul; 34(21):4186-95. PubMed ID: 21052244
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Algorithm to increase the largest aberration that can be reconstructed from Hartmann sensor measurements.
    Roggemann MC; Schulz TJ
    Appl Opt; 1998 Jul; 37(20):4321-9. PubMed ID: 18285881
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Wave-front sensing from subdivision of the focal plane with a lenslet array.
    Clare RM; Lane RG
    J Opt Soc Am A Opt Image Sci Vis; 2005 Jan; 22(1):117-25. PubMed ID: 15669622
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Measuring the centroid gain of a Shack-Hartmann quad-cell wavefront sensor by using slope discrepancy.
    van Dam MA
    J Opt Soc Am A Opt Image Sci Vis; 2005 Aug; 22(8):1509-14. PubMed ID: 16134845
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Concept for a laser guide beacon Shack-Hartmann wave-front sensor with dynamically steered subapertures.
    Baranec CJ; Bauman BJ; Lloyd-Hart M
    Opt Lett; 2005 Apr; 30(7):693-5. PubMed ID: 15832908
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fundamental performance of transverse wind estimator from Shack-Hartmann wave-front sensor measurements.
    Li Z; Li X
    Opt Express; 2018 Apr; 26(9):11859-11876. PubMed ID: 29716103
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Improvement of Shack-Hartmann wave-front sensor measurement for extreme adaptive optics.
    Nicolle M; Fusco T; Rousset G; Michau V
    Opt Lett; 2004 Dec; 29(23):2743-5. PubMed ID: 15605491
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Wave-front slope estimation.
    van Dam MA ; Lane RG
    J Opt Soc Am A Opt Image Sci Vis; 2000 Jul; 17(7):1319-24. PubMed ID: 10883985
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Signal-to-noise comparison of deconvolution from wave-front sensing with traditional linear and speckle image reconstruction.
    Welsh BM; Roggemann MC
    Appl Opt; 1995 Apr; 34(12):2111-9. PubMed ID: 21037757
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pyramid and Shack-Hartmann hybrid wave-front sensor.
    Guthery CE; Hart M
    Opt Lett; 2021 Mar; 46(5):1045-1048. PubMed ID: 33649653
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Scintillation resistant wavefront sensing based on multi-aperture phase reconstruction technique.
    Aubailly M; Vorontsov MA
    J Opt Soc Am A Opt Image Sci Vis; 2012 Aug; 29(8):1707-16. PubMed ID: 23201888
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Algorithm and experiment of whole-aperture wavefront reconstruction from annular subaperture Hartmann-Shack gradient data.
    Xu H; Xian H; Zhang Y
    Opt Express; 2010 Jun; 18(13):13431-43. PubMed ID: 20588474
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Centroid error due to non-uniform lenslet illumination in the Shack-Hartmann wavefront sensor.
    Akondi V; Steven S; Dubra A
    Opt Lett; 2019 Sep; 44(17):4167-4170. PubMed ID: 31465354
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tomographic wavefront error using multi-LGS constellation sensed with Shack-Hartmann wavefront sensors.
    Robert C; Conan JM; Gratadour D; Schreiber L; Fusco T
    J Opt Soc Am A Opt Image Sci Vis; 2010 Nov; 27(11):A201-15. PubMed ID: 21045881
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of a finite outer scale on the measurement of atmospheric-turbulence statistics with a Hartmann wave-front sensor.
    Feng S; Wenhan J
    Appl Opt; 2002 Jun; 41(17):3385-91. PubMed ID: 12074509
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Efficient computation of minimum-variance wave-front reconstructors with sparse matrix techniques.
    Ellerbroek BL
    J Opt Soc Am A Opt Image Sci Vis; 2002 Sep; 19(9):1803-16. PubMed ID: 12216874
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.