These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 21127643)

  • 1. Antireflection coatings for UV radiation obtained by molecular-beam deposition.
    Laux S; Mann K; Granitza B; Kaiser U; Richter W
    Appl Opt; 1996 Nov; 35(31):6216-8. PubMed ID: 21127643
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Testing of the durability of single-crystal calcium fluoride with and without antireflection coatings for use with high-power KrF excimer lasers.
    Krajnovich DJ; Kulkarni M; Leung W; Tam AC; Spool A; York B
    Appl Opt; 1992 Oct; 31(28):6062-75. PubMed ID: 20733809
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hollow silica nanoparticles in UV-visible antireflection coatings for poly(methyl methacrylate) substrates.
    Du Y; Luna LE; Tan WS; Rubner MF; Cohen RE
    ACS Nano; 2010 Jul; 4(7):4308-16. PubMed ID: 20536211
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Two-layer low-absorption antireflection coating for KCl.
    McLachlan AD
    Appl Opt; 1978 Feb; 17(3):447-50. PubMed ID: 20174428
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of 1064nm nanosecond laser-induced damage on antireflection coatings grown by atomic layer deposition.
    Liu Z; Chen S; Ma P; Wei Y; Zheng Y; Pan F; Liu H; Tang G
    Opt Express; 2012 Jan; 20(2):854-63. PubMed ID: 22274431
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ultraviolet antireflection coatings for use in silicon detector design.
    Hamden ET; Greer F; Hoenk ME; Blacksberg J; Dickie MR; Nikzad S; Martin DC; Schiminovich D
    Appl Opt; 2011 Jul; 50(21):4180-8. PubMed ID: 21772406
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Universal antireflection coatings for substrates for the visible spectral region.
    Dobrowolski JA; Sullivan BT
    Appl Opt; 1996 Sep; 35(25):4993-7. PubMed ID: 21102926
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Layer-by-layer fabrication of broad-band superhydrophobic antireflection coatings in near-infrared region.
    Zhang L; Li Y; Sun J; Shen J
    J Colloid Interface Sci; 2008 Mar; 319(1):302-8. PubMed ID: 18068180
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of deposition parameters on laser-damage threshold of silica-tantala AR coatings.
    Milam D; Lowdermilk WH; Rainer F; Swain JE; Carniglia CK; Hart TT
    Appl Opt; 1982 Oct; 21(20):3689-94. PubMed ID: 20396299
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparisons between laser damage and optical electric field behaviors for hafnia/silica antireflection coatings.
    Bellum J; Kletecka D; Rambo P; Smith I; Schwarz J; Atherton B
    Appl Opt; 2011 Mar; 50(9):C340-8. PubMed ID: 21460961
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optical coatings for deuterium fluoride chemical laser systems.
    Xiong S; Zhang Y
    Appl Opt; 1997 Jul; 36(21):4958-61. PubMed ID: 18259299
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Design of single layer antireflection coatings for lnP/ln(0.53)Ga(0.47)As/lnP photodetectors for the 1200-1600-nm wavelength range.
    Braun DM
    Appl Opt; 1988 May; 27(10):2006-11. PubMed ID: 20531697
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Homogeneously mixed dielectric films as double-layer antireflection coatings.
    Hradaynath R; Chopra KN; Grover OP
    Appl Opt; 1979 Feb; 18(3):328-30. PubMed ID: 20208713
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Broadband omnidirectional antireflection coatings for metal-backed solar cells optimized using simulated annealing algorithm incorporated with solar spectrum.
    Chang YJ; Chen YT
    Opt Express; 2011 Jul; 19 Suppl 4():A875-87. PubMed ID: 21747557
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Influence of heat treatments on the spectral performance of a V-type double-layer antireflection coating at 1.06 microm.
    Rabinovitch K; Pagis A
    Appl Opt; 1982 Jun; 21(12):2160-6. PubMed ID: 20395999
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Laser conditioning of LaF(3)/MgF(2) dielectric coatings at 248 nm.
    Eva E; Mann K; Kaiser N; Anton B; Henking R; Ristau D; Weissbrodt P; Mademann D; Raupach L; Hacker E
    Appl Opt; 1996 Oct; 35(28):5613-9. PubMed ID: 21127565
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Thin film optical coatings. 2: Three-layer antireflection coating theory.
    Mouchart J
    Appl Opt; 1977 Oct; 16(10):2722-8. PubMed ID: 20174220
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluation of antireflection coatings for optical waveguides.
    Yamada M; Ohmori Y; Takada K; Kobayashi M
    Appl Opt; 1991 Feb; 30(6):682-8. PubMed ID: 20582043
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fluoride antireflection coatings deposited at 193 nm.
    Liu MC; Lee CC; Liao BH; Kaneko M; Nakahira K; Takano Y
    Appl Opt; 2008 May; 47(13):C214-8. PubMed ID: 18449249
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Broadband AR coatings on germanium substrates using ion-assisted deposition.
    Oh TI
    Appl Opt; 1988 Oct; 27(20):4255-9. PubMed ID: 20539553
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.