These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

91 related articles for article (PubMed ID: 21127646)

  • 1. Antireflection quarter-wave-thick, high-spatial-frequency, surface-relief gratings at oblique incidence.
    Cojocaru E
    Appl Opt; 1996 Nov; 35(31):6231-5. PubMed ID: 21127646
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Infrared quarter-wave reflection retarders designed with high-spatial-frequency dielectric surface-relief gratings on a gold substrate at oblique incidence.
    Liu J; Azzam RM
    Appl Opt; 1996 Oct; 35(28):5557-62. PubMed ID: 21127557
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Homogeneous layer models for high-spatial-frequency dielectric surface-relief gratings: conical diffraction and antireflection designs.
    Brundrett DL; Glytsis EN; Gaylord TK
    Appl Opt; 1994 May; 33(13):2695-706. PubMed ID: 20885626
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High-spatial-frequency binary and multilevel stairstep gratings: polarization-selective mirrors and broadband antireflection surfaces.
    Glytsis EN; Gaylord TK
    Appl Opt; 1992 Aug; 31(22):4459-70. PubMed ID: 20725442
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Antireflection surface structure: dielectric layer(s) over a high spatial-frequency surface-relief grating on a lossy substrate.
    Glytsis EN; Gaylord TK
    Appl Opt; 1988 Oct; 27(20):4288-304. PubMed ID: 20539558
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Zero-reflectivity homogeneous layers and high spatialfrequency surface-reliefgratings on lossy materials.
    Gaylord TK; Glytsis EN; Moharam MG
    Appl Opt; 1987 Aug; 26(15):3123-35. PubMed ID: 20490019
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Antireflection gold surface-relief gratings: experimental characteristics.
    Hartman NF; Gaylord TK
    Appl Opt; 1988 Sep; 27(17):3738-43. PubMed ID: 20539451
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Design of antireflection gratings with approximate and rigorous methods.
    Bräuer R; Bryngdahl O
    Appl Opt; 1994 Dec; 33(34):7875-82. PubMed ID: 20963001
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Operator approach to electromagnetic coupled-wave calculations of lamellar gratings: infrared optical properties of intrinsic silicon gratings.
    Hava S; Auslender M; Rabinovich D
    Appl Opt; 1994 Jul; 33(21):4807-13. PubMed ID: 20935857
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electromagnetic scattering of two-dimensional surface-relief dielectric gratings.
    Han ST; Tsao YL; Walser RM; Becker MF
    Appl Opt; 1992 May; 31(13):2343-52. PubMed ID: 20720899
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Antireflection effect in ultrahigh spatial-frequency holographic relief gratings.
    Ono Y; Kimura Y; Ohta Y; Nishida N
    Appl Opt; 1987 Mar; 26(6):1142-6. PubMed ID: 20454283
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Guided-mode resonant wave plates.
    Magnusson R; Shokooh-Saremi M; Johnson EG
    Opt Lett; 2010 Jul; 35(14):2472-4. PubMed ID: 20634867
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Application of Kogelnik's two-wave theory to deep, slanted, highly efficient, relief transmission gratings.
    Gerritsen HJ; Thornton DK; Bolton SR
    Appl Opt; 1991 Mar; 30(7):807-14. PubMed ID: 20582064
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Design of rectangular-groove fused-silica gratings as polarizing beam splitters.
    Bi Q; Zheng J; Sun M; Zhang F; Xie X; Lin Z
    Opt Express; 2010 May; 18(11):11969-78. PubMed ID: 20589059
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Design of a nonpolarizing beam splitter inside a glass cube.
    Gilo M
    Appl Opt; 1992 Sep; 31(25):5345-9. PubMed ID: 20733717
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Zero-reflectivity high spatial-frequency rectangular-groove dielectric surface-relief gratings.
    Gaylord TK; Baird WE; Moharam MG
    Appl Opt; 1986 Dec; 25(24):4562. PubMed ID: 18235823
    [No Abstract]   [Full Text] [Related]  

  • 17. Universal antireflection coatings for substrates for the visible spectral region.
    Dobrowolski JA; Sullivan BT
    Appl Opt; 1996 Sep; 35(25):4993-7. PubMed ID: 21102926
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reduction of light reflection at silicon-plate surfaces by means of subwavelength gratings in terahertz region.
    Kuroo S; Oyama S; Shiraishi K; Sasho H; Fukushima K
    Appl Opt; 2010 May; 49(15):2806-12. PubMed ID: 20490241
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Angle-resolved reflectance of obliquely aligned silver nanorods.
    Wang XJ; Abell JL; Zhao YP; Zhang ZM
    Appl Opt; 2012 Apr; 51(10):1521-31. PubMed ID: 22505070
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Impacts of semi-transparent window on reflectance from metallic gratings at oblique incidence.
    Ho CC; Huang MJ; Chen CJ; Chen YB
    Opt Express; 2015 Jun; 23(12):16096-108. PubMed ID: 26193583
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.