BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 21127679)

  • 1. Laser-induced incandescence: detection issues.
    Vander Wal RL
    Appl Opt; 1996 Nov; 35(33):6548-59. PubMed ID: 21127679
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Laser-induced incandescence: excitation intensity.
    Vander Wal RL; Jensen KA
    Appl Opt; 1998 Mar; 37(9):1607-16. PubMed ID: 18268755
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Size distributions of nanoscaled particles and gas temperatures from time-resolved laser-induced-incandescence measurements.
    Lehre T; Jungfleisch B; Suntz R; Bockhorn H
    Appl Opt; 2003 Apr; 42(12):2021-30. PubMed ID: 12716142
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluation of the irising effect of a slow-gating intensified charge-coupled device on laser-induced incandescence measurements of soot.
    Shaddix CR; Williams TC
    Rev Sci Instrum; 2009 Mar; 80(3):033702. PubMed ID: 19334922
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Simultaneous Inversion of Particle Size Distribution, Thermal Accommodation Coefficient, and Temperature of In-Flame Soot Aggregates Using Laser-Induced Incandescence.
    Zhang J; Zhang J; Huang X
    Materials (Basel); 2024 Jan; 17(3):. PubMed ID: 38591434
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Soot volume fraction and particle size measurements with laser-induced incandescence.
    Mewes B; Seitzman JM
    Appl Opt; 1997 Jan; 36(3):709-17. PubMed ID: 18250729
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A calibration-independent laser-induced incandescence technique for soot measurement by detecting absolute light intensity.
    Snelling DR; Smallwood GJ; Liu F; Gülder OL; Bachalo WD
    Appl Opt; 2005 Nov; 44(31):6773-85. PubMed ID: 16270566
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Laser-induced incandescence for soot particle size measurements in premixed flat flames.
    Axelsson B; Collin R; Bengtsson PE
    Appl Opt; 2000 Jul; 39(21):3683-90. PubMed ID: 18349943
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Assessment of soot particle vaporization effects during laser-induced incandescence with time-resolved light scattering.
    Yoder GD; Diwakar PK; Hahn DW
    Appl Opt; 2005 Jul; 44(20):4211-9. PubMed ID: 16045207
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Laser-induced incandescence measurements of soot in turbulent pool fires.
    Frederickson K; Kearney SP; Grasser TW
    Appl Opt; 2011 Feb; 50(4):A49-59. PubMed ID: 21283220
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of repetitive pulsing on multi-kHz planar laser-induced incandescence imaging in laminar and turbulent flames.
    Michael JB; Venkateswaran P; Shaddix CR; Meyer TR
    Appl Opt; 2015 Apr; 54(11):3331-44. PubMed ID: 25967321
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Laser-induced incandescence for soot diagnostics at high pressures.
    Hofmann M; Bessler WG; Schulz C; Jander H
    Appl Opt; 2003 Apr; 42(12):2052-62. PubMed ID: 12716145
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sequential signal detection for high dynamic range time-resolved laser-induced incandescence.
    Mansmann R; Thomson K; Smallwood G; Dreier T; Schulz C
    Opt Express; 2017 Feb; 25(3):2413-2421. PubMed ID: 29519087
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular dynamics simulations of laser-induced incandescence of soot using an extended ReaxFF reactive force field.
    Kamat AM; van Duin AC; Yakovlev A
    J Phys Chem A; 2010 Dec; 114(48):12561-72. PubMed ID: 21067165
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Determination of primary particle size distributions from time-resolved laser-induced incandescence measurements.
    Dankers S; Leipertz A
    Appl Opt; 2004 Jun; 43(18):3726-31. PubMed ID: 15218614
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Single-camera, single-shot, time-resolved laser-induced incandescence decay imaging.
    Chen Y; Cenker E; Richardson DR; Kearney SP; Halls BR; Skeen SA; Shaddix CR; Guildenbecher DR
    Opt Lett; 2018 Nov; 43(21):5363-5366. PubMed ID: 30383008
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fractal-like Aggregates: Relation between Morphology and Physical Properties.
    Filippov AV; Zurita M; Rosner DE
    J Colloid Interface Sci; 2000 Sep; 229(1):261-273. PubMed ID: 10942568
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Performance characteristics of soot primary particle size measurements by time-resolved laser-induced incandescence.
    Will S; Schraml S; Bader K; Leipertz A
    Appl Opt; 1998 Aug; 37(24):5647-58. PubMed ID: 18286051
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A mobile system for a comprehensive online-characterization of nanoparticle aggregates based on wide-angle light scattering and laser-induced incandescence.
    Huber FJ; Altenhoff M; Will S
    Rev Sci Instrum; 2016 May; 87(5):053102. PubMed ID: 27250387
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analysis of the Influence of the Conduction Sub-Model Formulation on the Modeling of Laser-Induced Incandescence of Diesel Soot Aggregates.
    Menanteau S; Lemaire R
    Entropy (Basel); 2019 Dec; 22(1):. PubMed ID: 33285795
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.