BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 21127809)

  • 1. Evolution of domain promiscuity in eukaryotic genomes--a perspective from the inferred ancestral domain architectures.
    Cohen-Gihon I; Fong JH; Sharan R; Nussinov R; Przytycka TM; Panchenko AR
    Mol Biosyst; 2011 Mar; 7(3):784-92. PubMed ID: 21127809
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evolution of protein domain promiscuity in eukaryotes.
    Basu MK; Carmel L; Rogozin IB; Koonin EV
    Genome Res; 2008 Mar; 18(3):449-61. PubMed ID: 18230802
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Domain mobility in proteins: functional and evolutionary implications.
    Basu MK; Poliakov E; Rogozin IB
    Brief Bioinform; 2009 May; 10(3):205-16. PubMed ID: 19151098
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evolution of the PWWP-domain encoding genes in the plant and animal lineages.
    Alvarez-Venegas R; Avramova Z
    BMC Evol Biol; 2012 Jun; 12():101. PubMed ID: 22734652
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The modular nature of protein evolution: domain rearrangement rates across eukaryotic life.
    Dohmen E; Klasberg S; Bornberg-Bauer E; Perrey S; Kemena C
    BMC Evol Biol; 2020 Feb; 20(1):30. PubMed ID: 32059645
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evolution of Protein Domain Architectures.
    Forslund SK; Kaduk M; Sonnhammer ELL
    Methods Mol Biol; 2019; 1910():469-504. PubMed ID: 31278674
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Promiscuous Domains in Eukaryotes and HAT Proteins in FUNGI Have Followed Different Evolutionary Paths.
    Murcia-Garzón J; Méndez-Tenorio A
    J Mol Evol; 2022 Feb; 90(1):124-138. PubMed ID: 35084521
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A comprehensive evolutionary classification of proteins encoded in complete eukaryotic genomes.
    Koonin EV; Fedorova ND; Jackson JD; Jacobs AR; Krylov DM; Makarova KS; Mazumder R; Mekhedov SL; Nikolskaya AN; Rao BS; Rogozin IB; Smirnov S; Sorokin AV; Sverdlov AV; Vasudevan S; Wolf YI; Yin JJ; Natale DA
    Genome Biol; 2004; 5(2):R7. PubMed ID: 14759257
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evolution of protein domain architectures.
    Forslund K; Sonnhammer EL
    Methods Mol Biol; 2012; 856():187-216. PubMed ID: 22399460
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The evolution of human cells in terms of protein innovation.
    Sardar AJ; Oates ME; Fang H; Forrest AR; Kawaji H; ; Gough J; Rackham OJ
    Mol Biol Evol; 2014 Jun; 31(6):1364-74. PubMed ID: 24692656
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantification of the elevated rate of domain rearrangements in metazoa.
    Ekman D; Björklund AK; Elofsson A
    J Mol Biol; 2007 Oct; 372(5):1337-48. PubMed ID: 17689563
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Proteins with Highly Evolvable Domain Architectures Are Nonessential but Highly Retained.
    Hsu CH; Chiang AW; Hwang MJ; Liao BY
    Mol Biol Evol; 2016 May; 33(5):1219-30. PubMed ID: 26769031
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparative genomics of transcription factors and chromatin proteins in parasitic protists and other eukaryotes.
    Iyer LM; Anantharaman V; Wolf MY; Aravind L
    Int J Parasitol; 2008 Jan; 38(1):1-31. PubMed ID: 17949725
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evolutionary connection between the catalytic subunits of DNA-dependent RNA polymerases and eukaryotic RNA-dependent RNA polymerases and the origin of RNA polymerases.
    Iyer LM; Koonin EV; Aravind L
    BMC Struct Biol; 2003 Jan; 3():1. PubMed ID: 12553882
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Regulatory potential, phyletic distribution and evolution of ancient, intracellular small-molecule-binding domains.
    Anantharaman V; Koonin EV; Aravind L
    J Mol Biol; 2001 Apr; 307(5):1271-92. PubMed ID: 11292341
    [TBL] [Abstract][Full Text] [Related]  

  • 16. This Déjà vu feeling--analysis of multidomain protein evolution in eukaryotic genomes.
    Zmasek CM; Godzik A
    PLoS Comput Biol; 2012; 8(11):e1002701. PubMed ID: 23166479
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Function-selective domain architecture plasticity potentials in eukaryotic genome evolution.
    Linkeviciute V; Rackham OJ; Gough J; Oates ME; Fang H
    Biochimie; 2015 Dec; 119():269-77. PubMed ID: 25980317
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evolutionary history and functional implications of protein domains and their combinations in eukaryotes.
    Itoh M; Nacher JC; Kuma K; Goto S; Kanehisa M
    Genome Biol; 2007; 8(6):R121. PubMed ID: 17588271
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural and evolutionary divergence of cyclic nucleotide binding domains in eukaryotic pathogens: Implications for drug design.
    Mohanty S; Kennedy EJ; Herberg FW; Hui R; Taylor SS; Langsley G; Kannan N
    Biochim Biophys Acta; 2015 Oct; 1854(10 Pt B):1575-85. PubMed ID: 25847873
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modeling the evolution of protein domain architectures using maximum parsimony.
    Fong JH; Geer LY; Panchenko AR; Bryant SH
    J Mol Biol; 2007 Feb; 366(1):307-15. PubMed ID: 17166515
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.