These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
149 related articles for article (PubMed ID: 21127938)
1. A 3D active-passive numerical skeletal muscle model incorporating initial tissue strains. Validation with experimental results on rat tibialis anterior muscle. Grasa J; Ramírez A; Osta R; Muñoz MJ; Soteras F; Calvo B Biomech Model Mechanobiol; 2011 Oct; 10(5):779-87. PubMed ID: 21127938 [TBL] [Abstract][Full Text] [Related]
2. A 3D skeletal muscle model coupled with active contraction of muscle fibres and hyperelastic behaviour. Tang CY; Zhang G; Tsui CP J Biomech; 2009 May; 42(7):865-72. PubMed ID: 19264310 [TBL] [Abstract][Full Text] [Related]
3. A visco-hyperelastic model for skeletal muscle tissue under high strain rates. Lu YT; Zhu HX; Richmond S; Middleton J J Biomech; 2010 Sep; 43(13):2629-32. PubMed ID: 20566197 [TBL] [Abstract][Full Text] [Related]
4. A 3D electro-mechanical continuum model for simulating skeletal muscle contraction. Hernández-Gascón B; Grasa J; Calvo B; Rodríguez JF J Theor Biol; 2013 Oct; 335():108-18. PubMed ID: 23820034 [TBL] [Abstract][Full Text] [Related]
5. Active finite element analysis of skeletal muscle-tendon complex during isometric, shortening and lengthening contraction. Tsui CP; Tang CY; Leung CP; Cheng KW; Ng YF; Chow DH; Li CK Biomed Mater Eng; 2004; 14(3):271-9. PubMed ID: 15299239 [TBL] [Abstract][Full Text] [Related]
6. Method for characterizing viscoelasticity of human gluteal tissue. Then C; Vogl TJ; Silber G J Biomech; 2012 Apr; 45(7):1252-8. PubMed ID: 22360834 [TBL] [Abstract][Full Text] [Related]
7. Simulation of active skeletal muscle tissue with a transversely isotropic viscohyperelastic continuum material model. Khodaei H; Mostofizadeh S; Brolin K; Johansson H; Osth J Proc Inst Mech Eng H; 2013 May; 227(5):571-80. PubMed ID: 23637267 [TBL] [Abstract][Full Text] [Related]
8. Passive nonlinear elastic behaviour of skeletal muscle: experimental results and model formulation. Calvo B; Ramírez A; Alonso A; Grasa J; Soteras F; Osta R; Muñoz MJ J Biomech; 2010 Jan; 43(2):318-25. PubMed ID: 19857866 [TBL] [Abstract][Full Text] [Related]
9. Evaluation of a combination of continuum and truss finite elements in a model of passive and active muscle tissue. Hedenstierna S; Halldin P; Brolin K Comput Methods Biomech Biomed Engin; 2008 Dec; 11(6):627-39. PubMed ID: 18642161 [TBL] [Abstract][Full Text] [Related]
10. A finite-element model for the mechanical analysis of skeletal muscles. Johansson T; Meier P; Blickhan R J Theor Biol; 2000 Sep; 206(1):131-49. PubMed ID: 10968943 [TBL] [Abstract][Full Text] [Related]
11. Characterization of human passive muscles for impact loads using genetic algorithm and inverse finite element methods. Chawla A; Mukherjee S; Karthikeyan B Biomech Model Mechanobiol; 2009 Feb; 8(1):67-76. PubMed ID: 18293021 [TBL] [Abstract][Full Text] [Related]
12. A biophysically guided constitutive law of the musculotendon-complex: modelling and numerical implementation in Abaqus. Saini H; Röhrle O Comput Methods Programs Biomed; 2022 Nov; 226():107152. PubMed ID: 36194967 [TBL] [Abstract][Full Text] [Related]
13. A shell finite element model of the pelvic floor muscles. d'Aulignac D; Martins JA; Pires EB; Mascarenhas T; Jorge RM Comput Methods Biomech Biomed Engin; 2005 Oct; 8(5):339-47. PubMed ID: 16298856 [TBL] [Abstract][Full Text] [Related]
14. On a phenomenological model for fatigue effects in skeletal muscles. Böl M; Stark H; Schilling N J Theor Biol; 2011 Jul; 281(1):122-32. PubMed ID: 20211632 [TBL] [Abstract][Full Text] [Related]
15. Finite element modelling of contracting skeletal muscle. Oomens CW; Maenhout M; van Oijen CH; Drost MR; Baaijens FP Philos Trans R Soc Lond B Biol Sci; 2003 Sep; 358(1437):1453-60. PubMed ID: 14561336 [TBL] [Abstract][Full Text] [Related]
16. On the derivation of passive 3D material parameters from 1D stress-strain data of hydrostats. Winkel B; Schleichardt A J Biomech; 2011 Jul; 44(11):2113-7. PubMed ID: 21696743 [TBL] [Abstract][Full Text] [Related]
17. A 3D model of muscle reveals the causes of nonuniform strains in the biceps brachii. Blemker SS; Pinsky PM; Delp SL J Biomech; 2005 Apr; 38(4):657-65. PubMed ID: 15713285 [TBL] [Abstract][Full Text] [Related]
18. How does a three-dimensional continuum muscle model affect the kinematics and muscle strains of a finite element neck model compared to a discrete muscle model in rear-end, frontal, and lateral impacts. Hedenstierna S; Halldin P Spine (Phila Pa 1976); 2008 Apr; 33(8):E236-45. PubMed ID: 18404093 [TBL] [Abstract][Full Text] [Related]
19. Finite element implementation of a generalized Fung-elastic constitutive model for planar soft tissues. Sun W; Sacks MS Biomech Model Mechanobiol; 2005 Nov; 4(2-3):190-9. PubMed ID: 16075264 [TBL] [Abstract][Full Text] [Related]
20. Creating and simulating skeletal muscle from the visible human data set. Teran J; Sifakis E; Blemker SS; Ng-Thow-Hing V; Lau C; Fedkiw R IEEE Trans Vis Comput Graph; 2005; 11(3):317-28. PubMed ID: 15868831 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]