These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

339 related articles for article (PubMed ID: 21128033)

  • 1. Crack propagation resistance is similar under static and cyclic loading in crosslinked UHMWPE: a pilot study.
    Furmanski J; Rimnac CM
    Clin Orthop Relat Res; 2011 Aug; 469(8):2302-7. PubMed ID: 21128033
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Viscoplastic crack initiation and propagation in crosslinked UHMWPE from clinically relevant notches up to 0.5mm radius.
    Sirimamilla PA; Rimnac CM; Furmanski J
    J Mech Behav Biomed Mater; 2018 Jan; 77():73-77. PubMed ID: 28888935
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Peak stress intensity factor governs crack propagation velocity in crosslinked ultrahigh-molecular-weight polyethylene.
    Sirimamilla A; Furmanski J; Rimnac C
    J Biomed Mater Res B Appl Biomater; 2013 Apr; 101(3):430-5. PubMed ID: 23165898
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Crack initiation from a clinically relevant notch in a highly-crosslinked UHMWPE subjected to static and cyclic loading.
    Sirimamilla A; Rimnac CM
    J Mech Behav Biomed Mater; 2019 Mar; 91():366-372. PubMed ID: 30658250
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Application of viscoelastic fracture model and non-uniform crack initiation at clinically relevant notches in crosslinked UHMWPE.
    Sirimamilla PA; Furmanski J; Rimnac CM
    J Mech Behav Biomed Mater; 2013 Jan; 17():11-21. PubMed ID: 23127638
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Compliance calibration for fatigue crack propagation testing of ultra high molecular weight polyethylene.
    Varadarajan R; Rimnac CM
    Biomaterials; 2006 Sep; 27(27):4693-7. PubMed ID: 16750266
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of the remelting process on the fatigue behavior of electron beam irradiated UHMWPE.
    Puértolas JA; Medel FJ; Cegoñino J; Gomez-Barrena E; Ríos R
    J Biomed Mater Res B Appl Biomater; 2006 Feb; 76(2):346-53. PubMed ID: 16161125
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multiaxial fatigue behavior of conventional and highly crosslinked UHMWPE during cyclic small punch testing.
    Villarraga ML; Kurtz SM; Herr MP; Edidin AA
    J Biomed Mater Res A; 2003 Aug; 66(2):298-309. PubMed ID: 12889000
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fatigue crack propagation behavior of ultrahigh molecular weight polyethylene.
    Connelly GM; Rimnac CM; Wright TM; Hertzberg RW; Manson JA
    J Orthop Res; 1984; 2(2):119-25. PubMed ID: 6491807
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Prevention of fatigue cracks in ultrahigh molecular weight polyethylene joint components by the addition of vitamin E.
    Tomita N; Kitakura T; Onmori N; Ikada Y; Aoyama E
    J Biomed Mater Res; 1999; 48(4):474-8. PubMed ID: 10421689
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effects of degree of crosslinking on the fatigue crack initiation and propagation resistance of orthopedic-grade polyethylene.
    Baker DA; Bellare A; Pruitt L
    J Biomed Mater Res A; 2003 Jul; 66(1):146-54. PubMed ID: 12833441
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fatigue crack propagation resistance of virgin and highly crosslinked, thermally treated ultra-high molecular weight polyethylene.
    Gencur SJ; Rimnac CM; Kurtz SM
    Biomaterials; 2006 Mar; 27(8):1550-7. PubMed ID: 16303175
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Notch fatigue of ultrahigh molecular weight polyethylene (UHMWPE) used in total joint replacements.
    Ansari F; Gludovatz B; Kozak A; Ritchie RO; Pruitt LA
    J Mech Behav Biomed Mater; 2016 Jul; 60():267-279. PubMed ID: 26919563
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fatigue crack propagation resistance of highly crosslinked polyethylene.
    Bradford L; Baker D; Ries MD; Pruitt LA
    Clin Orthop Relat Res; 2004 Dec; (429):68-72. PubMed ID: 15577468
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An augmented hybrid constitutive model for simulation of unloading and cyclic loading behavior of conventional and highly crosslinked UHMWPE.
    Bergström JS; Rimnac CM; Kurtz SM
    Biomaterials; 2004 May; 25(11):2171-8. PubMed ID: 14741632
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Natural polyphenols enhance stability of crosslinked UHMWPE for joint implants.
    Shen J; Gao G; Liu X; Fu J
    Clin Orthop Relat Res; 2015 Mar; 473(3):760-6. PubMed ID: 25106800
    [TBL] [Abstract][Full Text] [Related]  

  • 17. How do material properties influence wear and fracture mechanisms?
    Rimnac C; Pruitt L;
    J Am Acad Orthop Surg; 2008; 16 Suppl 1():S94-100. PubMed ID: 18612023
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Does texturing of UHMWPE increase strength and toughness?: a pilot study.
    Addiego F; Buchheit O; Ruch D; Ahzi S; Dahoun A
    Clin Orthop Relat Res; 2011 Aug; 469(8):2318-26. PubMed ID: 21132414
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Notch strengthening and hardening behavior of conventional and highly crosslinked UHMWPE under applied tensile loading.
    Sobieraj MC; Kurtz SM; Rimnac CM
    Biomaterials; 2005 Jun; 26(17):3411-26. PubMed ID: 15621230
    [TBL] [Abstract][Full Text] [Related]  

  • 20. J-integral fracture toughness and tearing modulus measurement of radiation cross-linked UHMWPE.
    Gomoll A; Wanich T; Bellare A
    J Orthop Res; 2002 Nov; 20(6):1152-6. PubMed ID: 12472222
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.