These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 21128451)

  • 1. Observation of Si pattern sidewall using inclination atomic force microscope for evaluation of line edge roughness.
    Hosaka S; Koyabu H; Noro M; Takizawa K; Sone H; Yin Y
    J Nanosci Nanotechnol; 2010 Jul; 10(7):4522-7. PubMed ID: 21128451
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Atomic Force Microscopy Sidewall Imaging with a Quartz Tuning Fork Force Sensor.
    Hussain D; Wen Y; Zhang H; Song J; Xie H
    Sensors (Basel); 2018 Jan; 18(1):. PubMed ID: 29301265
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Atomic force microscope caliper for critical dimension measurements of micro and nanostructures through sidewall scanning.
    Xie H; Hussain D; Yang F; Sun L
    Ultramicroscopy; 2015 Nov; 158():8-16. PubMed ID: 26103045
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Three-dimensional imaging of undercut and sidewall structures by atomic force microscopy.
    Cho SJ; Ahn BW; Kim J; Lee JM; Hua Y; Yoo YK; Park SI
    Rev Sci Instrum; 2011 Feb; 82(2):023707. PubMed ID: 21361601
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rapid measurement of a high step microstructure with 90° steep sidewall.
    Ju BF; Chen YL; Zhang W; Fang FZ
    Rev Sci Instrum; 2012 Jan; 83(1):013706. PubMed ID: 22299961
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Application of focused ion-beam sampling for sidewall-roughness measurement of free-standing sub-μm objects by atomic force microscopy.
    Nagatomi T; Nakao T; Fujimoto Y
    Microscopy (Oxf); 2020 Mar; 69(1):11-16. PubMed ID: 31943021
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of tip shape on line edge roughness measurement based on atomic force microscopy.
    Li N; Wang F; Zhao X
    Rev Sci Instrum; 2010 Dec; 81(12):123703. PubMed ID: 21198028
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Atomic force microscopy deep trench and sidewall imaging with an optical fiber probe.
    Xie H; Hussain D; Yang F; Sun L
    Rev Sci Instrum; 2014 Dec; 85(12):123704. PubMed ID: 25554298
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Three-Dimensional Atomic Force Microscopy for Sidewall Imaging Using Torsional Resonance Mode.
    Liu L; Xu J; Zhang R; Wu S; Hu X; Hu X
    Scanning; 2018; 2018():7606037. PubMed ID: 30116468
    [TBL] [Abstract][Full Text] [Related]  

  • 10. True 3D Nanometrology: 3D-Probing with a Cantilever-Based Sensor.
    Thiesler J; Ahbe T; Tutsch R; Dai G
    Sensors (Basel); 2021 Dec; 22(1):. PubMed ID: 35009855
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Novel operation mode for eliminating influence of inclination angle and friction in atomic force microscopy.
    Wang F; Wang Y; Zhou F; Zhao X
    Ultramicroscopy; 2010 May; 110(6):592-5. PubMed ID: 20202755
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Automated measurement and analysis of sidewall roughness using three-dimensional atomic force microscopy.
    Yoo SB; Yun SH; Jo AJ; Cho SJ; Cho H; Lee JH; Ahn BW
    Appl Microsc; 2022 Mar; 52(1):1. PubMed ID: 35258764
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Line-Edge Roughness on Fin-Field-Effect-Transistor Performance for 7-nm and 5-nm Patterns.
    Kim SK
    J Nanosci Nanotechnol; 2020 Nov; 20(11):6912-6915. PubMed ID: 32604535
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A technique for the non-destructive EUV mask sidewall angle measurement using scanning electron microscope.
    Lee S; Lee J; Ban S; Oh HK; Nam B; Kim S; Yim D; Kim O
    J Nanosci Nanotechnol; 2013 Dec; 13(12):8032-5. PubMed ID: 24266186
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Line-Edge Roughness from Extreme Ultraviolet Lithography to Fin-Field-Effect-Transistor: Computational Study.
    Kim SK
    Micromachines (Basel); 2021 Nov; 12(12):. PubMed ID: 34945342
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Lateral Tip Control Effects in CD-AFM Metrology: The Large Tip Limit.
    Dixson RG; Orji NG; Goldband RS
    J Micro Nanolithogr MEMS MOEMS; 2016 Jan; 15(1):. PubMed ID: 27087883
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of the tip-sample contact force on the nanostructure size fabricated by local oxidation nanolithography.
    Hu K; Wu S; Huang M; Hu X; Wang Q
    Ultramicroscopy; 2012 Apr; 115():7-13. PubMed ID: 22446199
    [TBL] [Abstract][Full Text] [Related]  

  • 18. About the influence of Line Edge Roughness on measured effective-CD.
    Bilski B; Frenner K; Osten W
    Opt Express; 2011 Oct; 19(21):19967-72. PubMed ID: 21997006
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Direct observation of the actin filament by tip-scan atomic force microscopy.
    Narita A; Usukura E; Yagi A; Tateyama K; Akizuki S; Kikumoto M; Matsumoto T; Maéda Y; Ito S; Usukura J
    Microscopy (Oxf); 2016 Aug; 65(4):370-7. PubMed ID: 27242058
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A study on the behavior of water droplet confined between an atomic force microscope tip and rough surfaces.
    Ko JA; Choi HJ; Ha MY; Hong SD; Yoon HS
    Langmuir; 2010 Jun; 26(12):9728-35. PubMed ID: 20462264
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.