BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

208 related articles for article (PubMed ID: 21128470)

  • 1. Nanotube morphology and corrosion resistance of a low rigidity quaternary titanium alloy for biomedical applications.
    Saji VS; Choe HC; Ko YM; Ahn H
    J Nanosci Nanotechnol; 2010 Jul; 10(7):4635-9. PubMed ID: 21128470
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An electrochemical study on self-ordered nanoporous and nanotubular oxide on Ti-35Nb-5Ta-7Zr alloy for biomedical applications.
    Saji VS; Choe HC; Brantley WA
    Acta Biomater; 2009 Jul; 5(6):2303-10. PubMed ID: 19289307
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electrochemical oxide nanotube formation on the Ti-35Ta-xHf alloys for dental materials.
    Moon BH; Jeong YH; Choe HC
    J Nanosci Nanotechnol; 2011 Aug; 11(8):7428-32. PubMed ID: 22103212
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Corrosion behavior of nanotubular oxide on the Ti-29Nb-xZr alloy.
    Kim JU; Kim BH; Lee K; Choe HC; Ko YM
    J Nanosci Nanotechnol; 2011 Feb; 11(2):1636-9. PubMed ID: 21456255
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nanotubular oxide surface and layer formed on the Ti-35Ta-xZr alloys for biomaterials.
    Kim EJ; Kim WG; Jeong YH; Choe HC
    J Nanosci Nanotechnol; 2011 Aug; 11(8):7433-7. PubMed ID: 22103213
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Surface morphology of highly ordered nanotube formed and laser textured beta titanium alloys.
    Kim JU; Jeong YH; Choe HC
    J Nanosci Nanotechnol; 2013 Mar; 13(3):1876-9. PubMed ID: 23755610
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nanotube nucleation phenomena on Ti-25Ta-xZr alloys for implants using ATO technique.
    Kim HJ; Jeong YH; Brantley WA; Choe HC
    J Nanosci Nanotechnol; 2014 Oct; 14(10):7569-73. PubMed ID: 25942827
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electrochemical behavior and effect of heat treatment on morphology, crystalline structure of self-organized TiO2 nanotube arrays on Ti-6Al-7Nb for biomedical applications.
    Mohan L; Anandan C; Rajendran N
    Mater Sci Eng C Mater Biol Appl; 2015 May; 50():394-401. PubMed ID: 25746285
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electrochemical corrosion behavior and elasticity properties of Ti-6Al-xFe alloys for biomedical applications.
    Lu J; Zhao Y; Niu H; Zhang Y; Du Y; Zhang W; Huo W
    Mater Sci Eng C Mater Biol Appl; 2016 May; 62():36-44. PubMed ID: 26952395
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phenomena of nanotube nucleation and growth on new ternary titanium alloys.
    Choe HC; Jeong YH; Brantley WA
    J Nanosci Nanotechnol; 2010 Jul; 10(7):4684-9. PubMed ID: 21128479
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparative corrosion study of Ti-Ta alloys for dental applications.
    Mareci D; Chelariu R; Gordin DM; Ungureanu G; Gloriant T
    Acta Biomater; 2009 Nov; 5(9):3625-39. PubMed ID: 19508903
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electrochemical formation of self-organized anodic nanotube coating on Ti-28Zr-8Nb biomedical alloy surface.
    Feng XJ; Macak JM; Albu SP; Schmuki P
    Acta Biomater; 2008 Mar; 4(2):318-23. PubMed ID: 17923448
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biocompatibility of nanotube formed Ti-30Nb-7Ta alloys.
    Kim ES; Choe HC
    J Nanosci Nanotechnol; 2014 Nov; 14(11):8427-31. PubMed ID: 25958540
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Experimental study on the corrosion behavior of a type of oral near β-type titanium alloys modified with double glow plasma nitriding].
    Wen K; Li F
    Zhonghua Kou Qiang Yi Xue Za Zhi; 2015 Dec; 50(12):751-4. PubMed ID: 26887401
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nanotube Nucleation Phenomena of Titanium Dioxide on the Ti-6Al-4V Alloy Using Anodic Titanium Oxide Technique.
    Kim HJ; Jeong YH; Choe HC
    J Nanosci Nanotechnol; 2015 Jan; 15(1):467-70. PubMed ID: 26328383
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Study of corrosion behavior of titanium with anodized oxidation film].
    Yu WQ; Qiu J; Zhang FQ
    Hua Xi Kou Qiang Yi Xue Za Zhi; 2011 Apr; 29(2):203-5. PubMed ID: 21598500
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modified surface morphology of a novel Ti-24Nb-4Zr-7.9Sn titanium alloy via anodic oxidation for enhanced interfacial biocompatibility and osseointegration.
    Li X; Chen T; Hu J; Li S; Zou Q; Li Y; Jiang N; Li H; Li J
    Colloids Surf B Biointerfaces; 2016 Aug; 144():265-275. PubMed ID: 27100853
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of an amorphous titania nanotubes coating on the fatigue and corrosion behaviors of the biomedical Ti-6Al-4V and Ti-6Al-7Nb alloys.
    Campanelli LC; Bortolan CC; da Silva PSCP; Bolfarini C; Oliveira NTC
    J Mech Behav Biomed Mater; 2017 Jan; 65():542-551. PubMed ID: 27697716
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High resolution transmission electron microscopy study of the hardening mechanism through phase separation in a beta-Ti-35Nb-7Zr-5Ta alloy for implant applications.
    Afonso CR; Ferrandini PL; Ramirez AJ; Caram R
    Acta Biomater; 2010 Apr; 6(4):1625-9. PubMed ID: 19913645
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In-situ formation of textured TiN coatings on biomedical titanium alloy by laser irradiation.
    Zhao X; Zhang P; Wang X; Chen Y; Liu H; Chen L; Sheng Y; Li W
    J Mech Behav Biomed Mater; 2018 Feb; 78():143-153. PubMed ID: 29156353
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.