These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 21128470)

  • 81. Study on hemocompatibility and corrosion behavior of ion implanted TiNi shape memory alloy and Co-based alloys.
    Liang C; Huang N
    J Biomed Mater Res A; 2007 Oct; 83(1):235-40. PubMed ID: 17607737
    [TBL] [Abstract][Full Text] [Related]  

  • 82. Corrosion behavior of Ti-5Ag alloy with and without thermal oxidation in artificial saliva solution.
    Zhang BB; Wang BL; Li L; Zheng YF
    Dent Mater; 2011 Mar; 27(3):214-20. PubMed ID: 21093901
    [TBL] [Abstract][Full Text] [Related]  

  • 83. Enhanced photoassisted water electrolysis using vertically oriented anodically fabricated Ti-Nb-Zr-O mixed oxide nanotube arrays.
    Allam NK; Alamgir F; El-Sayed MA
    ACS Nano; 2010 Oct; 4(10):5819-26. PubMed ID: 20815374
    [TBL] [Abstract][Full Text] [Related]  

  • 84. Electrochemical behavior and corrosion resistance of Ti-15Mo alloy in naturally-aerated solutions, containing chloride and fluoride ions.
    Rodrigues AV; Oliveira NT; dos Santos ML; Guastaldi AC
    J Mater Sci Mater Med; 2015 Jan; 26(1):5323. PubMed ID: 25577207
    [TBL] [Abstract][Full Text] [Related]  

  • 85. Precipitation hardening and microstructure evolution of the Ti-7Nb-10Mo alloy during aging.
    Yi R; Liu H; Yi D; Wan W; Wang B; Jiang Y; Yang Q; Wang D; Gao Q; Xu Y; Tang Q
    Mater Sci Eng C Mater Biol Appl; 2016 Jun; 63():577-86. PubMed ID: 27040253
    [TBL] [Abstract][Full Text] [Related]  

  • 86. Anodic Fabrication of Ti-Ni-O Nanotube Arrays on Shape Memory Alloy.
    Liu Q; Ding D; Ning C
    Materials (Basel); 2014 Apr; 7(4):3262-3273. PubMed ID: 28788616
    [TBL] [Abstract][Full Text] [Related]  

  • 87. Highly Ordered Nanotube Formation on Beta Typed Ti-
    Kim SP; Choe HC
    J Nanosci Nanotechnol; 2020 Sep; 20(9):5791-5795. PubMed ID: 32331182
    [TBL] [Abstract][Full Text] [Related]  

  • 88. Surface observation of nanotube/micropit formed Ti-Nb-xZr alloy for biocompatibility.
    Jeong YH; Ban JS; Choe HC
    J Nanosci Nanotechnol; 2013 Mar; 13(3):1706-9. PubMed ID: 23755577
    [TBL] [Abstract][Full Text] [Related]  

  • 89. Synthesis and Characterization of Nanostructured Oxide Layers on Ti-Nb-Zr-Ta and Ti-Nb-Zr-Fe Biomedical Alloys.
    Strnad G; Jakab-Farkas L; Gobber FS; Peter I
    J Funct Biomater; 2023 Mar; 14(4):. PubMed ID: 37103270
    [TBL] [Abstract][Full Text] [Related]  

  • 90. Electrochemical Deposition of Si-Ca/P on Nanotube Formed Beta Ti Alloy by Cyclic Voltammetry Method.
    Jeong YH; Choe HC
    J Nanosci Nanotechnol; 2015 Aug; 15(8):6124-8. PubMed ID: 26369211
    [TBL] [Abstract][Full Text] [Related]  

  • 91. Hydroxyapatite precipitation on nanotube surfaces of Ti-35Ta-xNb alloys.
    Jo CI; Jeong YH; Brantley WA; Choe HC
    J Nanosci Nanotechnol; 2014 Oct; 14(10):7581-4. PubMed ID: 25942829
    [TBL] [Abstract][Full Text] [Related]  

  • 92. Proliferation of osteoblast precursor cells on the surface of TiO
    Fanton L; Loria F; Amores M; Pazos MR; Adán C; García-Muñoz RA; Marugán J
    Sci Rep; 2022 May; 12(1):7895. PubMed ID: 35551497
    [TBL] [Abstract][Full Text] [Related]  

  • 93.
    Donato TAG; de Almeida LH; Arana-Chavez VE; Grandini CR
    Materials (Basel); 2014 Mar; 7(3):2183-2193. PubMed ID: 28788562
    [TBL] [Abstract][Full Text] [Related]  

  • 94. Surface phenomena of hydroxyapatite film on the nanopore formed Ti-29Nb-xZr alloy by anodization for bioimplants.
    Kim EJ; Jeong YH; Choe HC
    J Nanosci Nanotechnol; 2013 Mar; 13(3):1679-83. PubMed ID: 23755573
    [TBL] [Abstract][Full Text] [Related]  

  • 95. Investigation of electrochemical behavior of nitrogen implanted Ti-15Mo-3Nb-3Al alloy in Hank's solution.
    Mohan L; Anandan C; Grips VK
    J Mater Sci Mater Med; 2013 Mar; 24(3):623-33. PubMed ID: 23242767
    [TBL] [Abstract][Full Text] [Related]  

  • 96. Surface modification and bioactivity of anodic Ti6Al4V alloy.
    Saharudin KA; Sreekantan S; Abd Aziz SN; Hazan R; Lai CW; Mydin RB; Mat I
    J Nanosci Nanotechnol; 2013 Mar; 13(3):1696-705. PubMed ID: 23755576
    [TBL] [Abstract][Full Text] [Related]  

  • 97. Preparation of TiO(2) layers on cp-Ti and Ti6Al4V by thermal and anodic oxidation and by sol-gel coating techniques and their characterization.
    Velten D; Biehl V; Aubertin F; Valeske B; Possart W; Breme J
    J Biomed Mater Res; 2002 Jan; 59(1):18-28. PubMed ID: 11745533
    [TBL] [Abstract][Full Text] [Related]  

  • 98. The Effect of Potential on Surface Characteristic and Corrosion Resistance of Anodic Oxide Film Formed on Commercial Pure Titanium at the Potentiodynamic-Aging Mode.
    Zhang L; Duan Y; Gao R; Yang J; Wei K; Tang D; Fu T
    Materials (Basel); 2019 Jan; 12(3):. PubMed ID: 30682862
    [TBL] [Abstract][Full Text] [Related]  

  • 99. Anticorrosion Performance of the Electrochemically Grown Mixed Porous Oxide Films on Titanium Alloy in Biological Solution.
    Benea L; Răvoiu A; Celis JP
    ACS Biomater Sci Eng; 2019 Nov; 5(11):5925-5934. PubMed ID: 33405683
    [TBL] [Abstract][Full Text] [Related]  

  • 100. Structure, morphology and fibroblasts adhesion of surface-porous titanium via anodic oxidation.
    Xie L; Yin G; Yan D; Liao X; Huang Z; Yao Y; Kang Y; Liu Y
    J Mater Sci Mater Med; 2010 Jan; 21(1):259-66. PubMed ID: 19641851
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.