BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 21128486)

  • 1. Carrier transport mechanisms of the writing and the erasing processes for Al/ZnO nanoparticles embedded in a polymethyl methacrylate layer/C60/p-Si diodes.
    Li F; Cho SW; Park KH; Son DI; Kim TW
    J Nanosci Nanotechnol; 2010 Jul; 10(7):4721-4. PubMed ID: 21128486
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Writing and erasing mechanisms of stable nonvolatile memory devices based on SnO2 nanoparticle/polystyrene nanocomposites.
    Yun DY; Park HM; Kim TW
    J Nanosci Nanotechnol; 2014 Dec; 14(12):9619-22. PubMed ID: 25971108
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Memory effects of nonvolatile memory devices with a floating gate fabricated utilizing Ag nanoparticles embedded into a polymethylmethacrylate layer.
    Kim WT; Yun DY; Jung JH; Kim TW
    J Nanosci Nanotechnol; 2011 Jan; 11(1):791-5. PubMed ID: 21446547
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhancement of the memory effects for nonvolatile memory devices fabricated utilizing ZnO nanoparticles embedded in a Si3N4 layer.
    Oh DH; Cho WJ; Son DI; Kim TW
    J Nanosci Nanotechnol; 2010 May; 10(5):3508-11. PubMed ID: 20358988
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Charge storage variations of organic memory devices fabricated by using C60 molecules embedded in an insulating polymer layer with Au and Al electrodes.
    Cho SH; Jung JH; Ham JH; Lee DU; Kim TW
    J Nanosci Nanotechnol; 2010 Jul; 10(7):4797-800. PubMed ID: 21128502
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Carrier transport in flexible organic bistable devices of ZnO nanoparticles embedded in an insulating poly(methyl methacrylate) polymer layer.
    Son DI; Park DH; Choi WK; Cho SH; Kim WT; Kim TW
    Nanotechnology; 2009 May; 20(19):195203. PubMed ID: 19420634
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Operating mechanisms of organic bistable devices containing ZnO nanoparticles embedded in a poly-4-vinyl-phenol layer.
    Park KH; Li F; Jung JH; Son DI; Cho SW; Kim TW
    J Nanosci Nanotechnol; 2010 Jul; 10(7):4801-4. PubMed ID: 21128503
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electrical bistabilities and memory mechanisms of organic bistable devices fabricated utilizing SnO2 nanoparticles embedded in a poly(methyl methacrylate) layer.
    Kwak JK; Yun DY; Son DI; Jung JH; Lee DU; Kim TW
    J Nanosci Nanotechnol; 2010 Nov; 10(11):7735-8. PubMed ID: 21138021
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Variations in the memory capability of nonvolatile memory devices fabricated using hybrid composites of InP nanoparticles and a polystyrene layer due to the scale-down.
    Lee SH; Yun DY; Jung JH; You JH; Kim TW; Ryu E; Kim SW
    J Nanosci Nanotechnol; 2011 Jan; 11(1):449-52. PubMed ID: 21446474
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Switching Mechanisms of Nonvolatile Memory Devices Fabricated with a Polydopamine Layer.
    Yang HY; Yun DY; Kim YN; Hong JM; Kim TW
    J Nanosci Nanotechnol; 2016 Feb; 16(2):1685-8. PubMed ID: 27433647
    [TBL] [Abstract][Full Text] [Related]  

  • 11. ZnO/NiO diode-based charge-trapping layer for flash memory featuring low-voltage operation.
    Sun CE; Chen CY; Chu KL; Shen YS; Lin CC; Wu YH
    ACS Appl Mater Interfaces; 2015 Apr; 7(12):6383-90. PubMed ID: 25781005
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Charge Carrier Transport Mechanism Based on Stable Low Voltage Organic Bistable Memory Device.
    Ramana VV; Moodley MK; Kumar AB; Kannan V
    J Nanosci Nanotechnol; 2015 May; 15(5):3934-8. PubMed ID: 26505027
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Charging and discharging mechanisms of organic bistable devices based on ZnO nanoparticles capped with a poly N-vinylcarbazole polymer.
    Son DI; Oh DH; Jung JH; Kim TW
    J Nanosci Nanotechnol; 2011 Jan; 11(1):711-5. PubMed ID: 21446529
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Organic memory capacitor device fabricated with Ag nanoparticles.
    Kim YH; Jung SM; Hu Q; Kim YS; Yoon TS; Lee HH
    J Nanosci Nanotechnol; 2011 Jul; 11(7):6044-8. PubMed ID: 22121655
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electrical bistabilities and memory stabilities of nonvolatile bistable devices fabricated utilizing C(60) molecules embedded in a polymethyl methacrylate layer.
    Cho SH; Lee DI; Jung JH; Kim TW
    Nanotechnology; 2009 Aug; 20(34):345204. PubMed ID: 19652271
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In situ synthesis of high density sub-50 nm ZnO nanopatterned arrays using diblock copolymer templates.
    Suresh V; Huang MS; Srinivasan MP; Krishnamoorthy S
    ACS Appl Mater Interfaces; 2013 Jun; 5(12):5727-32. PubMed ID: 23675650
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inverse I-V Injection Characteristics of ZnO Nanoparticle-Based Diodes.
    Mundt P; Vogel S; Bonrad K; von Seggern H
    ACS Appl Mater Interfaces; 2016 Aug; 8(31):20168-75. PubMed ID: 27443793
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An efficient Si light-emitting diode based on an n- ZnO/SiO2-Si nanocrystals-SiO2/p-Si heterostructure.
    Sun E; Su FH; Shih YT; Tsai HL; Chen CH; Wu MK; Yang JR; Chen MJ
    Nanotechnology; 2009 Nov; 20(44):445202. PubMed ID: 19801782
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transparent polymeric hybrid film of ZnO nanoparticle quantum dots and PMMA with high luminescence and tunable emission color.
    Matsuyama K; Mishima K; Kato T; Irie K; Mishima K
    J Colloid Interface Sci; 2012 Feb; 367(1):171-7. PubMed ID: 22071518
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Robust ZnO nanoparticle embedded memory device using vancomycin conjugate and its biorecognition for electrical charging node.
    Kim M; Lee HJ; Oh S; Kim Y; Jung H; Oh MK; Yoon YJ; Yoo TH; Yoon TS; Lee HH
    Biosens Bioelectron; 2014 Jun; 56():33-8. PubMed ID: 24462828
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.