These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

85 related articles for article (PubMed ID: 21128497)

  • 1. Ag-catalyzed growth of Ge nanostructures via the thermal evaporation of Ge powder.
    Hong CY; Tsai SF; Chang HC; Lin WT; Wu KH
    J Nanosci Nanotechnol; 2010 Jul; 10(7):4773-6. PubMed ID: 21128497
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Selective growth of Ge nanowires by low-temperature thermal evaporation.
    Sutter E; Ozturk B; Sutter P
    Nanotechnology; 2008 Oct; 19(43):435607. PubMed ID: 21832702
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Morphology control of self-catalyzed germanium nanostructures with graphitic carbon shell.
    Kim BS; Lee JH; Son K; Hwang SW; Choi BL; Lee EK; Whang D
    J Nanosci Nanotechnol; 2012 May; 12(5):4103-7. PubMed ID: 22852353
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Temperature-dependent growth of germanium oxide and silicon oxide based nanostructures, aligned silicon oxide nanowire assemblies, and silicon oxide microtubes.
    Hu J; Jiang Y; Meng X; Lee CS; Lee ST
    Small; 2005 Apr; 1(4):429-38. PubMed ID: 17193468
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The temperature-controlled growth of In2O3 nanowires, nanotowers and ultra-long layered nanorods.
    Singh N; Zhang T; Lee PS
    Nanotechnology; 2009 May; 20(19):195605. PubMed ID: 19420644
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synthesis of Group IV Nanowires on Graphene: The Case of Ge Nanocrawlers.
    Mataev E; Rastogi SK; Madhusudan A; Bone J; Lamprinakos N; Picard Y; Cohen-Karni T
    Nano Lett; 2016 Aug; 16(8):5267-72. PubMed ID: 27400248
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Germanium nanowires with 3-nm-diameter prepared by low temperature vapour-liquid-solid chemical vapour deposition.
    Simanullang M; Usami K; Kodera T; Uchida K; Oda S
    J Nanosci Nanotechnol; 2011 Sep; 11(9):8163-8. PubMed ID: 22097548
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Directed synthesis of germanium oxide nanowires by vapor-liquid-solid oxidation.
    Gunji M; Thombare SV; Hu S; McIntyre PC
    Nanotechnology; 2012 Sep; 23(38):385603. PubMed ID: 22947505
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Vertically oriented epitaxial germanium nanowires on silicon substrates using thin germanium buffer layers.
    Jung JH; Yoon HS; Kim YL; Song MS; Kim Y; Chen ZG; Zou J; Choi DY; Kang JH; Joyce HJ; Gao Q; Hoe Tan H; Jagadish C
    Nanotechnology; 2010 Jul; 21(29):295602. PubMed ID: 20585174
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Metastability of Au-Ge liquid nanocatalysts: Ge vapor-liquid-solid nanowire growth far below the bulk eutectic temperature.
    Adhikari H; Marshall AF; Goldthorpe IA; Chidsey CE; McIntyre PC
    ACS Nano; 2007 Dec; 1(5):415-22. PubMed ID: 19206662
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Control of lateral dimension in metal-catalyzed germanium nanowire growth: usage of carbon sheath.
    Kim BS; Kim MJ; Lee JC; Hwang SW; Choi BL; Lee EK; Whang D
    Nano Lett; 2012 Aug; 12(8):4007-12. PubMed ID: 22823001
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sn-induced low-temperature growth of Ge nanowire electrodes with a large lithium storage capacity.
    Ko YD; Kang JG; Lee GH; Park JG; Park KS; Jin YH; Kim DW
    Nanoscale; 2011 Aug; 3(8):3371-5. PubMed ID: 21750788
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Growth of heterojunctions in Si-Ge alloy nanowires by altering AuGeSi eutectic composition using an approach based on thermal oxidation.
    Sun YT; Lee HY; Wang IT; Wen CY
    Nanotechnology; 2019 Jul; 30(28):284002. PubMed ID: 30913543
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Different growth regimes in InP nanowire growth mediated by Ag nanoparticles.
    Oliveira DS; Zavarize M; Tizei LHG; Walls M; Ospina CA; Iikawa F; Ugarte D; Cotta MA
    Nanotechnology; 2017 Dec; 28(50):505604. PubMed ID: 29099391
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of substrates on structural and optical properties of tin oxide (SnO2) nanostructures.
    Johari A; Bhatnagar MC; Rana V
    J Nanosci Nanotechnol; 2012 Oct; 12(10):7903-8. PubMed ID: 23421154
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Controlled synthesis and photoluminescence properties of ZnS nanowires and nanoribbons.
    Kar S; Chaudhuri S
    J Phys Chem B; 2005 Mar; 109(8):3298-302. PubMed ID: 16851356
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Germanium-catalyzed hierarchical Al(2)O(3) and SiO(2) nanowire bunch arrays.
    Gu Z; Liu F; Howe JY; Parans Paranthaman M; Pan Z
    Nanoscale; 2009 Dec; 1(3):347-54. PubMed ID: 20648272
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Vapor-solid growth of one-dimensional layer-structured gallium sulfide nanostructures.
    Shen G; Chen D; Chen PC; Zhou C
    ACS Nano; 2009 May; 3(5):1115-20. PubMed ID: 19354225
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Growth and evolution of nickel germanide nanostructures on Ge(001).
    Grzela T; Capellini G; Koczorowski W; Schubert MA; Czajka R; Curson NJ; Heidmann I; Schmidt T; Falta J; Schroeder T
    Nanotechnology; 2015 Sep; 26(38):385701. PubMed ID: 26335383
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Al-induced crystallization of amorphous Ge and formation of fractal Ge micro-/nanoclusters.
    Li Q; Chen C; Chen Z; Jiao Z; Wu M; Shek CH; Wu CM; Lai JK
    Inorg Chem; 2012 Aug; 51(15):8473-8. PubMed ID: 22803828
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.