BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

218 related articles for article (PubMed ID: 21128603)

  • 1. Investigation of single-molecule kinetics mediated by weak hydrogen bonds within a biological nanopore.
    Asandei A; Apetrei A; Park Y; Hahm KS; Luchian T
    Langmuir; 2011 Jan; 27(1):19-24. PubMed ID: 21128603
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Protein nanopore-based, single-molecule exploration of copper binding to an antimicrobial-derived, histidine-containing chimera peptide.
    Mereuta L; Schiopu I; Asandei A; Park Y; Hahm KS; Luchian T
    Langmuir; 2012 Dec; 28(49):17079-91. PubMed ID: 23140333
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Recognizing the translocation signals of individual peptide-oligonucleotide conjugates using an α-hemolysin nanopore.
    Ying YL; Li DW; Liu Y; Dey SK; Kraatz HB; Long YT
    Chem Commun (Camb); 2012 Sep; 48(70):8784-6. PubMed ID: 22832595
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interrogating single proteins through nanopores: challenges and opportunities.
    Movileanu L
    Trends Biotechnol; 2009 Jun; 27(6):333-41. PubMed ID: 19394097
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Forming an alpha-hemolysin nanopore for single-molecule analysis.
    Jetha NN; Wiggin M; Marziali A
    Methods Mol Biol; 2009; 544():113-27. PubMed ID: 19488697
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Catalyzing the translocation of polypeptides through attractive interactions.
    Wolfe AJ; Mohammad MM; Cheley S; Bayley H; Movileanu L
    J Am Chem Soc; 2007 Nov; 129(45):14034-41. PubMed ID: 17949000
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Controlling a single protein in a nanopore through electrostatic traps.
    Mohammad MM; Prakash S; Matouschek A; Movileanu L
    J Am Chem Soc; 2008 Mar; 130(12):4081-8. PubMed ID: 18321107
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Single-molecule observation of the catalytic subunit of cAMP-dependent protein kinase binding to an inhibitor peptide.
    Xie H; Braha O; Gu LQ; Cheley S; Bayley H
    Chem Biol; 2005 Jan; 12(1):109-20. PubMed ID: 15664520
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transport of alpha-helical peptides through alpha-hemolysin and aerolysin pores.
    Stefureac R; Long YT; Kraatz HB; Howard P; Lee JS
    Biochemistry; 2006 Aug; 45(30):9172-9. PubMed ID: 16866363
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Membrane Curvature Affects the Formation of α-Hemolysin Nanopores.
    Fujii S; Matsuura T; Yomo T
    ACS Chem Biol; 2015 Jul; 10(7):1694-701. PubMed ID: 25860290
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The internal cavity of the staphylococcal alpha-hemolysin pore accommodates approximately 175 exogenous amino acid residues.
    Jung Y; Cheley S; Braha O; Bayley H
    Biochemistry; 2005 Jun; 44(25):8919-29. PubMed ID: 15966717
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Thermal unfolding of proteins probed at the single molecule level using nanopores.
    Payet L; Martinho M; Pastoriza-Gallego M; Betton JM; Auvray L; Pelta J; Mathé J
    Anal Chem; 2012 May; 84(9):4071-6. PubMed ID: 22486207
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The end of single-molecule envy.
    Holmes TC
    Chem Biol; 2005 Jan; 12(1):8-10. PubMed ID: 15664509
    [No Abstract]   [Full Text] [Related]  

  • 14. Molecular Insights into Distinct Detection Properties of α-Hemolysin, MspA, CsgG, and Aerolysin Nanopore Sensors.
    Zhou W; Qiu H; Guo Y; Guo W
    J Phys Chem B; 2020 Mar; 124(9):1611-1618. PubMed ID: 32027510
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Aromatic residues of Caveolin-1 binding motif of alpha-hemolysin are essential for membrane penetration.
    Pany S; Krishnasastry MV
    Biochem Biophys Res Commun; 2007 Nov; 363(1):197-202. PubMed ID: 17850762
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A functional protein pore with a "retro" transmembrane domain.
    Cheley S; Braha O; Lu X; Conlan S; Bayley H
    Protein Sci; 1999 Jun; 8(6):1257-67. PubMed ID: 10386875
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Activation of hemolysin toxin: relationship between two internal protein sites of acylation.
    Langston KG; Worsham LM; Earls L; Ernst-Fonberg ML
    Biochemistry; 2004 Apr; 43(14):4338-46. PubMed ID: 15065878
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantitative understanding of pH- and salt-mediated conformational folding of histidine-containing, β-hairpin-like peptides, through single-molecule probing with protein nanopores.
    Mereuta L; Asandei A; Seo CH; Park Y; Luchian T
    ACS Appl Mater Interfaces; 2014 Aug; 6(15):13242-56. PubMed ID: 25069106
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Discrimination of neutral oligosaccharides through a nanopore.
    Bacri L; Oukhaled A; Hémon E; Bassafoula FB; Auvray L; Daniel R
    Biochem Biophys Res Commun; 2011 Sep; 412(4):561-4. PubMed ID: 21839725
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tertiary structural changes of the alpha-hemolysin from Staphylococcus aureus on association with liposome membranes.
    Bortoleto RK; de Oliveira AH; Ruller R; Arni RK; Ward RJ
    Arch Biochem Biophys; 1998 Mar; 351(1):47-52. PubMed ID: 9500849
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.