These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
778 related articles for article (PubMed ID: 21128620)
1. Structure, interactions, and antibacterial activities of MSI-594 derived mutant peptide MSI-594F5A in lipopolysaccharide micelles: role of the helical hairpin conformation in outer-membrane permeabilization. Domadia PN; Bhunia A; Ramamoorthy A; Bhattacharjya S J Am Chem Soc; 2010 Dec; 132(51):18417-28. PubMed ID: 21128620 [TBL] [Abstract][Full Text] [Related]
2. Helical hairpin structure of a potent antimicrobial peptide MSI-594 in lipopolysaccharide micelles by NMR spectroscopy. Bhunia A; Ramamoorthy A; Bhattacharjya S Chemistry; 2009; 15(9):2036-40. PubMed ID: 19180607 [TBL] [Abstract][Full Text] [Related]
3. Mechanism of antibacterial action of dermaseptin B2: interplay between helix-hinge-helix structure and membrane curvature strain. Galanth C; Abbassi F; Lequin O; Ayala-Sanmartin J; Ladram A; Nicolas P; Amiche M Biochemistry; 2009 Jan; 48(2):313-27. PubMed ID: 19113844 [TBL] [Abstract][Full Text] [Related]
4. Influence of proline residues on the antibacterial and synergistic activities of alpha-helical peptides. Zhang L; Benz R; Hancock RE Biochemistry; 1999 Jun; 38(25):8102-11. PubMed ID: 10387056 [TBL] [Abstract][Full Text] [Related]
5. Lipopolysaccharide interaction is decisive for the activity of the antimicrobial peptide NK-2 against Escherichia coli and Proteus mirabilis. Hammer MU; Brauser A; Olak C; Brezesinski G; Goldmann T; Gutsmann T; Andrä J Biochem J; 2010 Apr; 427(3):477-88. PubMed ID: 20187872 [TBL] [Abstract][Full Text] [Related]
6. Structure, activity and interactions of the cysteine deleted analog of tachyplesin-1 with lipopolysaccharide micelle: Mechanistic insights into outer-membrane permeabilization and endotoxin neutralization. Saravanan R; Mohanram H; Joshi M; Domadia PN; Torres J; Ruedl C; Bhattacharjya S Biochim Biophys Acta; 2012 Jul; 1818(7):1613-24. PubMed ID: 22464970 [TBL] [Abstract][Full Text] [Related]
7. Dermaseptin S9, an alpha-helical antimicrobial peptide with a hydrophobic core and cationic termini. Lequin O; Ladram A; Chabbert L; Bruston F; Convert O; Vanhoye D; Chassaing G; Nicolas P; Amiche M Biochemistry; 2006 Jan; 45(2):468-80. PubMed ID: 16401077 [TBL] [Abstract][Full Text] [Related]
9. Structure-activity relations of parasin I, a histone H2A-derived antimicrobial peptide. Koo YS; Kim JM; Park IY; Yu BJ; Jang SA; Kim KS; Park CB; Cho JH; Kim SC Peptides; 2008 Jul; 29(7):1102-8. PubMed ID: 18406495 [TBL] [Abstract][Full Text] [Related]
10. Structural and functional characterization of two genetically related meucin peptides highlights evolutionary divergence and convergence in antimicrobial peptides. Gao B; Sherman P; Luo L; Bowie J; Zhu S FASEB J; 2009 Apr; 23(4):1230-45. PubMed ID: 19088182 [TBL] [Abstract][Full Text] [Related]
11. Structural studies of porcine myeloid antibacterial peptide PMAP-23 and its analogues in DPC micelles by NMR spectroscopy. Park K; Oh D; Shin SY; Hahm KS; Kim Y Biochem Biophys Res Commun; 2002 Jan; 290(1):204-12. PubMed ID: 11779154 [TBL] [Abstract][Full Text] [Related]
12. Acylation of SC4 dodecapeptide increases bactericidal potency against Gram-positive bacteria, including drug-resistant strains. Lockwood NA; Haseman JR; Tirrell MV; Mayo KH Biochem J; 2004 Feb; 378(Pt 1):93-103. PubMed ID: 14609430 [TBL] [Abstract][Full Text] [Related]
13. Lipopolysaccharide bound structures of the active fragments of fowlicidin-1, a cathelicidin family of antimicrobial and antiendotoxic peptide from chicken, determined by transferred nuclear Overhauser effect spectroscopy. Bhunia A; Mohanram H; Bhattacharjya S Biopolymers; 2009; 92(1):9-22. PubMed ID: 18844294 [TBL] [Abstract][Full Text] [Related]
14. Effect of the hydrophobicity to net positive charge ratio on antibacterial and anti-endotoxin activities of structurally similar antimicrobial peptides. Rosenfeld Y; Lev N; Shai Y Biochemistry; 2010 Feb; 49(5):853-61. PubMed ID: 20058937 [TBL] [Abstract][Full Text] [Related]
15. NMR structure of temporin-1 ta in lipopolysaccharide micelles: mechanistic insight into inactivation by outer membrane. Saravanan R; Joshi M; Mohanram H; Bhunia A; Mangoni ML; Bhattacharjya S PLoS One; 2013; 8(9):e72718. PubMed ID: 24039798 [TBL] [Abstract][Full Text] [Related]
16. NMR structure of pardaxin, a pore-forming antimicrobial peptide, in lipopolysaccharide micelles: mechanism of outer membrane permeabilization. Bhunia A; Domadia PN; Torres J; Hallock KJ; Ramamoorthy A; Bhattacharjya S J Biol Chem; 2010 Feb; 285(6):3883-3895. PubMed ID: 19959835 [TBL] [Abstract][Full Text] [Related]
17. Insights into the membrane interaction mechanism and antibacterial properties of chensinin-1b. Sun Y; Dong W; Sun L; Ma L; Shang D Biomaterials; 2015 Jan; 37():299-311. PubMed ID: 25453959 [TBL] [Abstract][Full Text] [Related]
18. The interaction of arginine- and tryptophan-rich cyclic hexapeptides with Escherichia coli membranes. Junkes C; Wessolowski A; Farnaud S; Evans RW; Good L; Bienert M; Dathe M J Pept Sci; 2008 Apr; 14(4):535-43. PubMed ID: 17985396 [TBL] [Abstract][Full Text] [Related]
19. Role of Aromatic Amino Acids in Lipopolysaccharide and Membrane Interactions of Antimicrobial Peptides for Use in Plant Disease Control. Datta A; Bhattacharyya D; Singh S; Ghosh A; Schmidtchen A; Malmsten M; Bhunia A J Biol Chem; 2016 Jun; 291(25):13301-17. PubMed ID: 27137928 [TBL] [Abstract][Full Text] [Related]