These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 21128649)

  • 1. Siloxane-triarylamine hybrids: discrete room temperature liquid triarylamines via the Piers-Rubinsztajn reaction.
    Kamino BA; Grande JB; Brook MA; Bender TP
    Org Lett; 2011 Jan; 13(1):154-7. PubMed ID: 21128649
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Liquid triarylamines: the scope and limitations of Piers-Rubinsztajn conditions for obtaining triarylamine-siloxane hybrid materials.
    Kamino BA; Mills B; Reali C; Gretton MJ; Brook MA; Bender TP
    J Org Chem; 2012 Feb; 77(4):1663-74. PubMed ID: 22220839
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tris(pentafluorophenyl)borane-catalyzed Hydride Transfer Reactions in Polysiloxane Chemistry-Piers-Rubinsztajn Reaction and Related Processes.
    Rubinsztajn S; Chojnowski J; Mizerska U
    Molecules; 2023 Aug; 28(16):. PubMed ID: 37630197
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Trace water affects tris(pentafluorophenyl)borane catalytic activity in the Piers-Rubinsztajn reaction.
    Schneider AF; Chen Y; Brook MA
    Dalton Trans; 2019 Sep; 48(36):13599-13606. PubMed ID: 31455970
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The ultimate Lewis acid catalyst: using tris(pentafluorophenyl) borane to create bespoke siloxane architectures.
    Gao H; Battley A; Leitao EM
    Chem Commun (Camb); 2022 Jul; 58(54):7451-7465. PubMed ID: 35726789
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Siloxane-Bond Formation Promoted by Lewis Acids: A Nonhydrolytic Sol-Gel Process and the Piers-Rubinsztajn Reaction.
    Wakabayashi R; Kuroda K
    Chempluschem; 2013 Aug; 78(8):764-774. PubMed ID: 31986688
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synthesis of structured polysiloxazanes via a Piers-Rubinsztajn reaction.
    Ai L; Chen Y; He L; Luo Y; Li S; Xu C
    Chem Commun (Camb); 2019 Nov; 55(93):14019-14022. PubMed ID: 31690921
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Testing the functional tolerance of the Piers-Rubinsztajn reaction: a new strategy for functional silicones.
    Grande JB; Thompson DB; Gonzaga F; Brook MA
    Chem Commun (Camb); 2010 Jul; 46(27):4988-90. PubMed ID: 20512186
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Porphyrin-triarylamine conjugates: strong electronic communication between triarylamine redox centers via the porphyrin dication.
    Chang JC; Ma CJ; Lee GH; Peng SM; Yeh CY
    Dalton Trans; 2005 Apr; (8):1504-8. PubMed ID: 15824789
    [TBL] [Abstract][Full Text] [Related]  

  • 10. New Control Over Silicone Synthesis using SiH Chemistry: The Piers-Rubinsztajn Reaction.
    Brook MA
    Chemistry; 2018 Jun; 24(34):8458-8469. PubMed ID: 29468751
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hyperbranched Polycarbosiloxanes: Synthesis by Piers-Rubinsztajn Reaction and Application as Precursors to Magnetoceramics.
    Zhang H; Xue L; Li J; Ma Q
    Polymers (Basel); 2020 Mar; 12(3):. PubMed ID: 32192198
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Surface and bulk aspects of mixed oxide catalytic nanoparticles: oxidation and dehydration of CH(3)OH by polyoxometallates.
    Nakka L; Molinari JE; Wachs IE
    J Am Chem Soc; 2009 Oct; 131(42):15544-54. PubMed ID: 19807071
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In situ attenuated total reflection infrared spectroscopy of imidazolium-based room-temperature ionic liquids under "supercritical" CO(2).
    Seki T; Grunwaldt JD; Baiker A
    J Phys Chem B; 2009 Jan; 113(1):114-22. PubMed ID: 19067550
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Frontispiece.
    Chempluschem; 2013 Aug; 78(8):. PubMed ID: 31986687
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electron-rich tetrathiafulvalene-triarylamine conjugates: synthesis and redox properties.
    Li H; Lambert C
    Chemistry; 2006 Jan; 12(4):1144-55. PubMed ID: 16254939
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A triarylamine-triarylborane dyad with a photochromic dithienylethene bridge.
    Mengel AK; He B; Wenger OS
    J Org Chem; 2012 Aug; 77(15):6545-52. PubMed ID: 22799443
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Exploring the fate of the tris(pentafluorophenyl)borane radical anion in weakly coordinating solvents.
    Lawrence EJ; Oganesyan VS; Wildgoose GG; Ashley AE
    Dalton Trans; 2013 Jan; 42(3):782-9. PubMed ID: 23201974
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Use of Piers-Rubinsztajn Chemistry to Access Unique and Challenging Silicon Phthalocyanines.
    Szawiola AM; Lessard BH; Raboui H; Bender TP
    ACS Omega; 2021 Oct; 6(41):26857-26869. PubMed ID: 34693107
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cationic Polymerization of Hexamethylcyclotrisiloxane in Excess Water.
    Barnes Q; Longuet C; Ganachaud F
    Molecules; 2021 Jul; 26(15):. PubMed ID: 34361555
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Azobenzene-linked porphyrin-fullerene dyads.
    Schuster DI; Li K; Guldi DM; Palkar A; Echegoyen L; Stanisky C; Cross RJ; Niemi M; Tkachenko NV; Lemmetyinen H
    J Am Chem Soc; 2007 Dec; 129(51):15973-82. PubMed ID: 18052375
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.