BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

316 related articles for article (PubMed ID: 21128672)

  • 21. A biomimetic "polysoap" for single-walled carbon nanotube dispersion.
    Wang D; Ji WX; Li ZC; Chen L
    J Am Chem Soc; 2006 May; 128(20):6556-7. PubMed ID: 16704245
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effect of Sodium Dodecyl Sulfate Adsorption on the Behavior of Water inside Single Walled Carbon Nanotubes with Dissipative Particle Dynamics Simulation.
    Vo MD; Papavassiliou DV
    Molecules; 2016 Apr; 21(4):500. PubMed ID: 27092476
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Kinetics of water filling the hydrophobic channels of narrow carbon nanotubes studied by molecular dynamics simulations.
    Wu K; Zhou B; Xiu P; Qi W; Wan R; Fang H
    J Chem Phys; 2010 Nov; 133(20):204702. PubMed ID: 21133447
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Cause and consequence of carbon nanotube doping in water and aqueous media.
    Moonoosawmy KR; Kruse P
    J Am Chem Soc; 2010 Feb; 132(5):1572-7. PubMed ID: 20078036
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Modification of single walled carbon nanotube surface chemistry to improve aqueous solubility and enhance cellular interactions.
    Crouzier T; Nimmagadda A; Nollert MU; McFetridge PS
    Langmuir; 2008 Nov; 24(22):13173-81. PubMed ID: 18947245
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Role of peptide--peptide interactions in stabilizing peptide-wrapped single-walled carbon nanotubes: a molecular dynamics study.
    Chiu CC; Dieckmann GR; Nielsen SO
    Biopolymers; 2009; 92(3):156-63. PubMed ID: 19226620
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Role of counterion condensation in the self-assembly of SDS surfactants at the water-graphite interface.
    Tummala NR; Striolo A
    J Phys Chem B; 2008 Feb; 112(7):1987-2000. PubMed ID: 18229918
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Comparative study of carbon nanotube dispersion using surfactants.
    Rastogi R; Kaushal R; Tripathi SK; Sharma AL; Kaur I; Bharadwaj LM
    J Colloid Interface Sci; 2008 Dec; 328(2):421-8. PubMed ID: 18848704
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Molecular dynamics study of a nanotube-binding amphiphilic helical peptide at different water/hydrophobic interfaces.
    Chiu CC; Dieckmann GR; Nielsen SO
    J Phys Chem B; 2008 Dec; 112(51):16326-33. PubMed ID: 19049390
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Simulation of adsorption of DNA on carbon nanotubes.
    Zhao X; Johnson JK
    J Am Chem Soc; 2007 Aug; 129(34):10438-45. PubMed ID: 17676840
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Alcohol-induced drying of carbon nanotubes and its implications for alcohol/water separation: a molecular dynamics study.
    Tian X; Yang Z; Zhou B; Xiu P; Tu Y
    J Chem Phys; 2013 May; 138(20):204711. PubMed ID: 23742504
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Temperature induced restoration of fluorescence from oxidised single-walled carbon nanotubes in aqueous sodium dodecylsulfate solution.
    Nish A; Nicholas RJ
    Phys Chem Chem Phys; 2006 Aug; 8(30):3547-51. PubMed ID: 16871344
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Dispersing nanotubes with surfactants: a microscopic statistical mechanical analysis.
    Patel N; Egorov SA
    J Am Chem Soc; 2005 Oct; 127(41):14124-5. PubMed ID: 16218573
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Role of adsorbed surfactant in the reaction of aryl diazonium salts with single-walled carbon nanotubes.
    Hilmer AJ; McNicholas TP; Lin S; Zhang J; Wang QH; Mendenhall JD; Song C; Heller DA; Barone PW; Blankschtein D; Strano MS
    Langmuir; 2012 Jan; 28(2):1309-21. PubMed ID: 22136192
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Structure and orientation of interfacial water determine atomic force microscopy results: insights from molecular dynamics simulations.
    Argyris D; Ashby PD; Striolo A
    ACS Nano; 2011 Mar; 5(3):2215-23. PubMed ID: 21375261
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Supramolecular self-assembly of lipid derivatives on carbon nanotubes.
    Richard C; Balavoine F; Schultz P; Ebbesen TW; Mioskowski C
    Science; 2003 May; 300(5620):775-8. PubMed ID: 12730595
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effects of ionic surfactant adsorption on single-walled carbon nanotube thin film devices in aqueous solutions.
    Fu Q; Liu J
    Langmuir; 2005 Feb; 21(4):1162-5. PubMed ID: 15697254
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Interactions between single-walled carbon nanotubes and lysozyme.
    Bomboi F; Bonincontro A; La Mesa C; Tardani F
    J Colloid Interface Sci; 2011 Mar; 355(2):342-7. PubMed ID: 21215413
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Handedness enantioselection of carbon nanotubes using helical assemblies of flavin mononucleotide.
    Ju SY; Abanulo DC; Badalucco CA; Gascón JA; Papadimitrakopoulos F
    J Am Chem Soc; 2012 Aug; 134(32):13196-9. PubMed ID: 22871052
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Water transport inside a single-walled carbon nanotube driven by a temperature gradient.
    Shiomi J; Maruyama S
    Nanotechnology; 2009 Feb; 20(5):055708. PubMed ID: 19417367
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.