These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Structural and chemical properties of a flavodoxin from Anabaena PCC 7119. Fillat MF; Edmondson DE; Gomez-Moreno C Biochim Biophys Acta; 1990 Sep; 1040(2):301-7. PubMed ID: 2119231 [TBL] [Abstract][Full Text] [Related]
3. Electron transfer to nitrogenase. Characterization of flavodoxin from Azotobacter chroococcum and comparison of its redox potentials with those of flavodoxins from Azotobacter vinelandii and Klebsiella pneumoniae (nifF-gene product). Deistung J; Thorneley RN Biochem J; 1986 Oct; 239(1):69-75. PubMed ID: 3541922 [TBL] [Abstract][Full Text] [Related]
5. Oxidation-reduction potentials of ferredoxin-NADP+ reductase and flavodoxin from Anabaena PCC 7119 and their electrostatic and covalent complexes. Pueyo JJ; Gomez-Moreno C; Mayhew SG Eur J Biochem; 1991 Dec; 202(3):1065-71. PubMed ID: 1765067 [TBL] [Abstract][Full Text] [Related]
6. Physicochemical properties of flavodoxin from Desulfovibrio vulgaris. Dubourdieu M; le Gall J; Favaudon V Biochim Biophys Acta; 1975 Mar; 376(3):519-32. PubMed ID: 235984 [TBL] [Abstract][Full Text] [Related]
7. Role of glutamate-59 hydrogen bonded to N(3)H of the flavin mononucleotide cofactor in the modulation of the redox potentials of the Clostridium beijerinckii flavodoxin. Glutamate-59 is not responsible for the pH dependency but contributes to the stabilization of the flavin semiquinone. Bradley LH; Swenson RP Biochemistry; 1999 Sep; 38(38):12377-86. PubMed ID: 10493805 [TBL] [Abstract][Full Text] [Related]
8. Transient kinetics of electron-transfer reactions of flavodoxins. Jung J; Tollin G Biochemistry; 1981 Sep; 20(18):5124-31. PubMed ID: 7295670 [TBL] [Abstract][Full Text] [Related]
9. A modified flavodoxin with altered redox potentials is less efficient in electron transfer to nitrogenase. Hofstetter W; DerVartanian DV Biochem Biophys Res Commun; 1985 Apr; 128(2):643-9. PubMed ID: 3857914 [TBL] [Abstract][Full Text] [Related]
10. The redox potential of dithionite and SO-2 from equilibrium reactions with flavodoxins, methyl viologen and hydrogen plus hydrogenase. Mayhew SG Eur J Biochem; 1978 Apr; 85(2):535-47. PubMed ID: 648533 [TBL] [Abstract][Full Text] [Related]
11. On the intermolecular electron transfer between different redox states of flavodoxin from Megasphaera elsdenii. A 500-MHz 1H NMR study. Moonen CT; Müller F Eur J Biochem; 1984 Apr; 140(2):303-9. PubMed ID: 6325183 [TBL] [Abstract][Full Text] [Related]
12. Role of methionine 56 in the control of the oxidation-reduction potentials of the Clostridium beijerinckii flavodoxin: effects of substitutions by aliphatic amino acids and evidence for a role of sulfur-flavin interactions. Druhan LJ; Swenson RP Biochemistry; 1998 Jul; 37(27):9668-78. PubMed ID: 9657679 [TBL] [Abstract][Full Text] [Related]
13. Differential stabilization of the three FMN redox forms by tyrosine 94 and tryptophan 57 in flavodoxin from Anabaena and its influence on the redox potentials. Lostao A; Gómez-Moreno C; Mayhew SG; Sancho J Biochemistry; 1997 Nov; 36(47):14334-44. PubMed ID: 9398151 [TBL] [Abstract][Full Text] [Related]
14. Flavodoxin from Anabaena 7120: uniform nitrogen-15 enrichment and hydrogen-1, nitrogen-15, and phosphorus-31 NMR investigations of the flavin mononucleotide binding site in the reduced and oxidized states. Stockman BJ; Westler WM; Mooberry ES; Markley JL Biochemistry; 1988 Jan; 27(1):136-42. PubMed ID: 3126808 [TBL] [Abstract][Full Text] [Related]
15. Comparison of the kinetics of reduction and intramolecular electron transfer in electrostatic and covalent complexes of ferredoxin-NADP+ reductase and flavodoxin from Anabaena PCC 7119. Walker MC; Pueyo JJ; Gómez-Moreno C; Tollin G Arch Biochem Biophys; 1990 Aug; 281(1):76-83. PubMed ID: 2116771 [TBL] [Abstract][Full Text] [Related]
16. Evaluation of the electrostatic effect of the 5'-phosphate of the flavin mononucleotide cofactor on the oxidation--reduction potentials of the flavodoxin from desulfovibrio vulgaris (Hildenborough). Zhou Z; Swenson RP Biochemistry; 1996 Sep; 35(38):12443-54. PubMed ID: 8823179 [TBL] [Abstract][Full Text] [Related]
17. Laser flash absorption spectroscopy study of flavodoxin reduction by photosystem I in Synechococcus sp. PCC 7002. Mühlenhoff U; Sétif P Biochemistry; 1996 Feb; 35(5):1367-74. PubMed ID: 8634265 [TBL] [Abstract][Full Text] [Related]
18. Comparisons of wild-type and mutant flavodoxins from Anacystis nidulans. Structural determinants of the redox potentials. Hoover DM; Drennan CL; Metzger AL; Osborne C; Weber CH; Pattridge KA; Ludwig ML J Mol Biol; 1999 Dec; 294(3):725-43. PubMed ID: 10610792 [TBL] [Abstract][Full Text] [Related]
19. Characterisation of flavodoxin NADP+ oxidoreductase and flavodoxin; key components of electron transfer in Escherichia coli. McIver L; Leadbeater C; Campopiano DJ; Baxter RL; Daff SN; Chapman SK; Munro AW Eur J Biochem; 1998 Nov; 257(3):577-85. PubMed ID: 9839946 [TBL] [Abstract][Full Text] [Related]
20. The PsaE subunit is required for complex formation between photosystem I and flavodoxin from the cyanobacterium Synechocystis sp. PCC 6803. Meimberg K; Lagoutte B; Bottin H; Mühlenhoff U Biochemistry; 1998 Jul; 37(27):9759-67. PubMed ID: 9657689 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]