BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

301 related articles for article (PubMed ID: 21129403)

  • 1. Relationship between orientation to a blast and pressure wave propagation inside the rat brain.
    Chavko M; Watanabe T; Adeeb S; Lankasky J; Ahlers ST; McCarron RM
    J Neurosci Methods; 2011 Jan; 195(1):61-6. PubMed ID: 21129403
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Head orientation affects the intracranial pressure response resulting from shock wave loading in the rat.
    Dal Cengio Leonardi A; Keane NJ; Bir CA; Ryan AG; Xu L; Vandevord PJ
    J Biomech; 2012 Oct; 45(15):2595-602. PubMed ID: 22947434
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Skull flexure as a contributing factor in the mechanism of injury in the rat when exposed to a shock wave.
    Bolander R; Mathie B; Bir C; Ritzel D; VandeVord P
    Ann Biomed Eng; 2011 Oct; 39(10):2550-9. PubMed ID: 21735320
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Measurement of blast wave by a miniature fiber optic pressure transducer in the rat brain.
    Chavko M; Koller WA; Prusaczyk WK; McCarron RM
    J Neurosci Methods; 2007 Jan; 159(2):277-81. PubMed ID: 16949675
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Intracranial pressure increases during exposure to a shock wave.
    Leonardi AD; Bir CA; Ritzel DV; VandeVord PJ
    J Neurotrauma; 2011 Jan; 28(1):85-94. PubMed ID: 21091267
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A thoracic mechanism of mild traumatic brain injury due to blast pressure waves.
    Courtney AC; Courtney MW
    Med Hypotheses; 2009 Jan; 72(1):76-83. PubMed ID: 18829180
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mild neurotrauma indicates a range-specific pressure response to low level shock wave exposure.
    Vandevord PJ; Bolander R; Sajja VS; Hay K; Bir CA
    Ann Biomed Eng; 2012 Jan; 40(1):227-36. PubMed ID: 21994066
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development of a rat model for studying blast-induced traumatic brain injury.
    Cheng J; Gu J; Ma Y; Yang T; Kuang Y; Li B; Kang J
    J Neurol Sci; 2010 Jul; 294(1-2):23-8. PubMed ID: 20478573
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biomechanical assessment of brain dynamic responses due to blast pressure waves.
    Chafi MS; Karami G; Ziejewski M
    Ann Biomed Eng; 2010 Feb; 38(2):490-504. PubMed ID: 19806456
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanisms of blast induced brain injuries, experimental studies in rats.
    Risling M; Plantman S; Angeria M; Rostami E; Bellander BM; Kirkegaard M; Arborelius U; Davidsson J
    Neuroimage; 2011 Jan; 54 Suppl 1():S89-97. PubMed ID: 20493951
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Working toward exposure thresholds for blast-induced traumatic brain injury: thoracic and acceleration mechanisms.
    Courtney MW; Courtney AC
    Neuroimage; 2011 Jan; 54 Suppl 1():S55-61. PubMed ID: 20483376
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Simulation of blast-induced early-time intracranial wave physics leading to traumatic brain injury.
    Taylor PA; Ford CC
    J Biomech Eng; 2009 Jun; 131(6):061007. PubMed ID: 19449961
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Blast-induced biomechanical loading of the rat: an experimental and anatomically accurate computational blast injury model.
    Sundaramurthy A; Alai A; Ganpule S; Holmberg A; Plougonven E; Chandra N
    J Neurotrauma; 2012 Sep; 29(13):2352-64. PubMed ID: 22620716
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Neuropathology and pressure in the pig brain resulting from low-impulse noise exposure.
    Säljö A; Arrhén F; Bolouri H; Mayorga M; Hamberger A
    J Neurotrauma; 2008 Dec; 25(12):1397-406. PubMed ID: 19146459
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanisms and pathophysiology of the low-level blast brain injury in animal models.
    Säljö A; Mayorga M; Bolouri H; Svensson B; Hamberger A
    Neuroimage; 2011 Jan; 54 Suppl 1():S83-8. PubMed ID: 20580846
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanisms of primary blast-induced traumatic brain injury: insights from shock-wave research.
    Nakagawa A; Manley GT; Gean AD; Ohtani K; Armonda R; Tsukamoto A; Yamamoto H; Takayama K; Tominaga T
    J Neurotrauma; 2011 Jun; 28(6):1101-19. PubMed ID: 21332411
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pressure-dependent effect of shock waves on rat brain: induction of neuronal apoptosis mediated by a caspase-dependent pathway.
    Kato K; Fujimura M; Nakagawa A; Saito A; Ohki T; Takayama K; Tominaga T
    J Neurosurg; 2007 Apr; 106(4):667-76. PubMed ID: 17432720
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Blast exposure in rats with body shielding is characterized primarily by diffuse axonal injury.
    Garman RH; Jenkins LW; Switzer RC; Bauman RA; Tong LC; Swauger PV; Parks SA; Ritzel DV; Dixon CE; Clark RS; Bayir H; Kagan V; Jackson EK; Kochanek PM
    J Neurotrauma; 2011 Jun; 28(6):947-59. PubMed ID: 21449683
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Blast-Associated Shock Waves Result in Increased Brain Vascular Leakage and Elevated ROS Levels in a Rat Model of Traumatic Brain Injury.
    Kabu S; Jaffer H; Petro M; Dudzinski D; Stewart D; Courtney A; Courtney M; Labhasetwar V
    PLoS One; 2015; 10(5):e0127971. PubMed ID: 26024446
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanics of blast loading on the head models in the study of traumatic brain injury using experimental and computational approaches.
    Ganpule S; Alai A; Plougonven E; Chandra N
    Biomech Model Mechanobiol; 2013 Jun; 12(3):511-31. PubMed ID: 22832705
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.