BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 21129848)

  • 1. Metal accumulation potential of wild plants in tannery effluent contaminated soil of Kasur, Pakistan: field trials for toxic metal cleanup using Suaeda fruticosa.
    Firdaus-e Bareen ; Tahira SA
    J Hazard Mater; 2011 Feb; 186(1):443-50. PubMed ID: 21129848
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chemical fractionation and heavy metal accumulation in the plant of Sesamum indicum (L.) var. T55 grown on soil amended with tannery sludge: Selection of single extractants.
    Gupta AK; Sinha S
    Chemosphere; 2006 Jun; 64(1):161-73. PubMed ID: 16330080
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multivariate analysis of selected metals in tannery effluents and related soil.
    Tariq SR; Shah MH; Shaheen N; Khalique A; Manzoor S; Jaffar M
    J Hazard Mater; 2005 Jun; 122(1-2):17-22. PubMed ID: 15943925
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phytoextraction capacity of the Chenopodium album L. grown on soil amended with tannery sludge.
    Gupta AK; Sinha S
    Bioresour Technol; 2007 Jan; 98(2):442-6. PubMed ID: 16540314
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fresh organic matter of municipal solid waste enhances phytoextraction of heavy metals from contaminated soil.
    Salati S; Quadri G; Tambone F; Adani F
    Environ Pollut; 2010 May; 158(5):1899-906. PubMed ID: 19932537
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Leaching and uptake of heavy metals by ten different species of plants during an EDTA-assisted phytoextraction process.
    Chen Y; Li X; Shen Z
    Chemosphere; 2004 Oct; 57(3):187-96. PubMed ID: 15312735
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phytoextraction of heavy metals by Sesuvium portulacastrum l. a salt marsh halophyte from tannery effluent.
    Ayyappan D; Sathiyaraj G; Ravindran KC
    Int J Phytoremediation; 2016; 18(5):453-9. PubMed ID: 26552858
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Potential of Brassic rapa, Cannabis sativa, Helianthus annuus and Zea mays for phytoextraction of heavy metals from calcareous dredged sediment derived soils.
    Meers E; Ruttens A; Hopgood M; Lesage E; Tack FM
    Chemosphere; 2005 Oct; 61(4):561-72. PubMed ID: 16202810
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Assessment of single extraction methods for the prediction of bioavailability of metals to Brassica juncea L. Czern. (var. Vaibhav) grown on tannery waste contaminated soil.
    Gupta AK; Sinha S
    J Hazard Mater; 2007 Oct; 149(1):144-50. PubMed ID: 17475401
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison of the ability of organic acids and EDTA to enhance the phytoextraction of metals from a multi-metal contaminated soil.
    Kim SH; Lee IS
    Bull Environ Contam Toxicol; 2010 Feb; 84(2):255-9. PubMed ID: 19806283
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effects of exogenous plant growth regulators in the phytoextraction of heavy metals.
    Tassi E; Pouget J; Petruzzelli G; Barbafieri M
    Chemosphere; 2008 Mar; 71(1):66-73. PubMed ID: 18037469
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparative statistical analysis of chrome and vegetable tanning effluents and their effects on related soil.
    Tariq SR; Shah MH; Shaheen N
    J Hazard Mater; 2009 Sep; 169(1-3):285-90. PubMed ID: 19376649
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Remediation of metal contaminated soil with mineral-amended composts.
    van Herwijnen R; Hutchings TR; Al-Tabbaa A; Moffat AJ; Johns ML; Ouki SK
    Environ Pollut; 2007 Dec; 150(3):347-54. PubMed ID: 17399876
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multivariate analysis of trace metal levels in tannery effluents in relation to soil and water: a case study from Peshawar, Pakistan.
    Tariq SR; Shah MH; Shaheen N; Khalique A; Manzoor S; Jaffar M
    J Environ Manage; 2006 Apr; 79(1):20-9. PubMed ID: 16154685
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The use of NTA and EDDS for enhanced phytoextraction of metals from a multiply contaminated soil by Brassica carinata.
    Quartacci MF; Irtelli B; Baker AJ; Navari-Izzo F
    Chemosphere; 2007 Aug; 68(10):1920-8. PubMed ID: 17418884
    [TBL] [Abstract][Full Text] [Related]  

  • 16. EDTA-assisted Pb phytoextraction.
    Saifullah ; Meers E; Qadir M; de Caritat P; Tack FM; Du Laing G; Zia MH
    Chemosphere; 2009 Mar; 74(10):1279-91. PubMed ID: 19121533
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Model evaluation of the phytoextraction potential of heavy metal hyperaccumulators and non-hyperaccumulators.
    Liang HM; Lin TH; Chiou JM; Yeh KC
    Environ Pollut; 2009 Jun; 157(6):1945-52. PubMed ID: 19268408
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evidence for preferential depths of metal retention in roots of salt marsh plants.
    Caetano M; Vale C; Cesário R; Fonseca N
    Sci Total Environ; 2008 Feb; 390(2-3):466-74. PubMed ID: 18036637
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A phytogeochemical study of the Trás-os-Montes region (NE Portugal): possible species for plant-based soil remediation technologies.
    Díez Lázaro J; Kidd PS; Monterroso Martínez C
    Sci Total Environ; 2006 Feb; 354(2-3):265-77. PubMed ID: 16399000
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Role of plant growth regulators and a saprobic fungus in enhancement of metal phytoextraction potential and stress alleviation in pearl millet.
    Firdaus-e-Bareen ; Shafiq M; Jamil S
    J Hazard Mater; 2012 Oct; 237-238():186-93. PubMed ID: 22959131
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.