These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
114 related articles for article (PubMed ID: 21129848)
1. Metal accumulation potential of wild plants in tannery effluent contaminated soil of Kasur, Pakistan: field trials for toxic metal cleanup using Suaeda fruticosa. Firdaus-e Bareen ; Tahira SA J Hazard Mater; 2011 Feb; 186(1):443-50. PubMed ID: 21129848 [TBL] [Abstract][Full Text] [Related]
2. Chemical fractionation and heavy metal accumulation in the plant of Sesamum indicum (L.) var. T55 grown on soil amended with tannery sludge: Selection of single extractants. Gupta AK; Sinha S Chemosphere; 2006 Jun; 64(1):161-73. PubMed ID: 16330080 [TBL] [Abstract][Full Text] [Related]
3. Multivariate analysis of selected metals in tannery effluents and related soil. Tariq SR; Shah MH; Shaheen N; Khalique A; Manzoor S; Jaffar M J Hazard Mater; 2005 Jun; 122(1-2):17-22. PubMed ID: 15943925 [TBL] [Abstract][Full Text] [Related]
4. Phytoextraction capacity of the Chenopodium album L. grown on soil amended with tannery sludge. Gupta AK; Sinha S Bioresour Technol; 2007 Jan; 98(2):442-6. PubMed ID: 16540314 [TBL] [Abstract][Full Text] [Related]
5. Fresh organic matter of municipal solid waste enhances phytoextraction of heavy metals from contaminated soil. Salati S; Quadri G; Tambone F; Adani F Environ Pollut; 2010 May; 158(5):1899-906. PubMed ID: 19932537 [TBL] [Abstract][Full Text] [Related]
6. Leaching and uptake of heavy metals by ten different species of plants during an EDTA-assisted phytoextraction process. Chen Y; Li X; Shen Z Chemosphere; 2004 Oct; 57(3):187-96. PubMed ID: 15312735 [TBL] [Abstract][Full Text] [Related]
7. Phytoextraction of heavy metals by Sesuvium portulacastrum l. a salt marsh halophyte from tannery effluent. Ayyappan D; Sathiyaraj G; Ravindran KC Int J Phytoremediation; 2016; 18(5):453-9. PubMed ID: 26552858 [TBL] [Abstract][Full Text] [Related]
8. Potential of Brassic rapa, Cannabis sativa, Helianthus annuus and Zea mays for phytoextraction of heavy metals from calcareous dredged sediment derived soils. Meers E; Ruttens A; Hopgood M; Lesage E; Tack FM Chemosphere; 2005 Oct; 61(4):561-72. PubMed ID: 16202810 [TBL] [Abstract][Full Text] [Related]
9. Assessment of single extraction methods for the prediction of bioavailability of metals to Brassica juncea L. Czern. (var. Vaibhav) grown on tannery waste contaminated soil. Gupta AK; Sinha S J Hazard Mater; 2007 Oct; 149(1):144-50. PubMed ID: 17475401 [TBL] [Abstract][Full Text] [Related]
10. Comparison of the ability of organic acids and EDTA to enhance the phytoextraction of metals from a multi-metal contaminated soil. Kim SH; Lee IS Bull Environ Contam Toxicol; 2010 Feb; 84(2):255-9. PubMed ID: 19806283 [TBL] [Abstract][Full Text] [Related]
11. The effects of exogenous plant growth regulators in the phytoextraction of heavy metals. Tassi E; Pouget J; Petruzzelli G; Barbafieri M Chemosphere; 2008 Mar; 71(1):66-73. PubMed ID: 18037469 [TBL] [Abstract][Full Text] [Related]
12. Comparative statistical analysis of chrome and vegetable tanning effluents and their effects on related soil. Tariq SR; Shah MH; Shaheen N J Hazard Mater; 2009 Sep; 169(1-3):285-90. PubMed ID: 19376649 [TBL] [Abstract][Full Text] [Related]
13. Remediation of metal contaminated soil with mineral-amended composts. van Herwijnen R; Hutchings TR; Al-Tabbaa A; Moffat AJ; Johns ML; Ouki SK Environ Pollut; 2007 Dec; 150(3):347-54. PubMed ID: 17399876 [TBL] [Abstract][Full Text] [Related]
14. Multivariate analysis of trace metal levels in tannery effluents in relation to soil and water: a case study from Peshawar, Pakistan. Tariq SR; Shah MH; Shaheen N; Khalique A; Manzoor S; Jaffar M J Environ Manage; 2006 Apr; 79(1):20-9. PubMed ID: 16154685 [TBL] [Abstract][Full Text] [Related]
15. The use of NTA and EDDS for enhanced phytoextraction of metals from a multiply contaminated soil by Brassica carinata. Quartacci MF; Irtelli B; Baker AJ; Navari-Izzo F Chemosphere; 2007 Aug; 68(10):1920-8. PubMed ID: 17418884 [TBL] [Abstract][Full Text] [Related]
17. Model evaluation of the phytoextraction potential of heavy metal hyperaccumulators and non-hyperaccumulators. Liang HM; Lin TH; Chiou JM; Yeh KC Environ Pollut; 2009 Jun; 157(6):1945-52. PubMed ID: 19268408 [TBL] [Abstract][Full Text] [Related]
18. Evidence for preferential depths of metal retention in roots of salt marsh plants. Caetano M; Vale C; Cesário R; Fonseca N Sci Total Environ; 2008 Feb; 390(2-3):466-74. PubMed ID: 18036637 [TBL] [Abstract][Full Text] [Related]
19. A phytogeochemical study of the Trás-os-Montes region (NE Portugal): possible species for plant-based soil remediation technologies. Díez Lázaro J; Kidd PS; Monterroso Martínez C Sci Total Environ; 2006 Feb; 354(2-3):265-77. PubMed ID: 16399000 [TBL] [Abstract][Full Text] [Related]
20. Role of plant growth regulators and a saprobic fungus in enhancement of metal phytoextraction potential and stress alleviation in pearl millet. Firdaus-e-Bareen ; Shafiq M; Jamil S J Hazard Mater; 2012 Oct; 237-238():186-93. PubMed ID: 22959131 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]