These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

283 related articles for article (PubMed ID: 21129971)

  • 1. A molecular switch for photoperiod responsiveness in mammals.
    Dardente H; Wyse CA; Birnie MJ; Dupré SM; Loudon AS; Lincoln GA; Hazlerigg DG
    Curr Biol; 2010 Dec; 20(24):2193-8. PubMed ID: 21129971
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Neuroendocrine correlates of the critical day length response in the Soay sheep.
    Hazlerigg D; Lomet D; Lincoln G; Dardente H
    J Neuroendocrinol; 2018 Sep; 30(9):e12631. PubMed ID: 29972606
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Clocks for all seasons: unwinding the roles and mechanisms of circadian and interval timers in the hypothalamus and pituitary.
    Wood S; Loudon A
    J Endocrinol; 2014 Aug; 222(2):R39-59. PubMed ID: 24891434
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Circadian clock mechanism driving mammalian photoperiodism.
    Wood SH; Hindle MM; Mizoro Y; Cheng Y; Saer BRC; Miedzinska K; Christian HC; Begley N; McNeilly J; McNeilly AS; Meddle SL; Burt DW; Loudon ASI
    Nat Commun; 2020 Aug; 11(1):4291. PubMed ID: 32855407
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Acute induction of Eya3 by late-night light stimulation triggers TSHβ expression in photoperiodism.
    Masumoto KH; Ukai-Tadenuma M; Kasukawa T; Nagano M; Uno KD; Tsujino K; Horikawa K; Shigeyoshi Y; Ueda HR
    Curr Biol; 2010 Dec; 20(24):2199-206. PubMed ID: 21129973
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Melatonin-independent Photoperiodic Entrainment of the Circannual TSH Rhythm in the Pars Tuberalis of the European Hamster.
    Sáenz de Miera C; Sage-Ciocca D; Simonneaux V; Pévet P; Monecke S
    J Biol Rhythms; 2018 Jun; 33(3):302-317. PubMed ID: 29618281
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Photorefractoriness in mammals: dissociating a seasonal timer from the circadian-based photoperiod response.
    Lincoln GA; Johnston JD; Andersson H; Wagner G; Hazlerigg DG
    Endocrinology; 2005 Sep; 146(9):3782-90. PubMed ID: 15919753
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Redefining the limits of day length responsiveness in a seasonal mammal.
    Wagner GC; Johnston JD; Clarke IJ; Lincoln GA; Hazlerigg DG
    Endocrinology; 2008 Jan; 149(1):32-9. PubMed ID: 17901234
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification of Eya3 and TAC1 as long-day signals in the sheep pituitary.
    Dupré SM; Miedzinska K; Duval CV; Yu L; Goodman RL; Lincoln GA; Davis JR; McNeilly AS; Burt DD; Loudon AS
    Curr Biol; 2010 May; 20(9):829-35. PubMed ID: 20434341
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Signaling pathways to and from the hypophysial pars tuberalis, an important center for the control of seasonal rhythms.
    Korf HW
    Gen Comp Endocrinol; 2018 Mar; 258():236-243. PubMed ID: 28511899
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mammalian photoperiodic system: formal properties and neuroendocrine mechanisms of photoperiodic time measurement.
    Goldman BD
    J Biol Rhythms; 2001 Aug; 16(4):283-301. PubMed ID: 11506375
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Establishment of TSH β real-time monitoring system in mammalian photoperiodism.
    Tsujino K; Narumi R; Masumoto KH; Susaki EA; Shinohara Y; Abe T; Iigo M; Wada A; Nagano M; Shigeyoshi Y; Ueda HR
    Genes Cells; 2013 Jul; 18(7):575-88. PubMed ID: 23758111
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A circannual clock drives expression of genes central for seasonal reproduction.
    Sáenz de Miera C; Monecke S; Bartzen-Sprauer J; Laran-Chich MP; Pévet P; Hazlerigg DG; Simonneaux V
    Curr Biol; 2014 Jul; 24(13):1500-6. PubMed ID: 24980500
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular characterization of the long-day response in the Soay sheep, a seasonal mammal.
    Hazlerigg DG; Andersson H; Johnston JD; Lincoln G
    Curr Biol; 2004 Feb; 14(4):334-9. PubMed ID: 14972686
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evidence for RGS4 modulation of melatonin and thyrotrophin signalling pathways in the pars tuberalis.
    Dupré SM; Dardente H; Birnie MJ; Loudon AS; Lincoln GA; Hazlerigg DG
    J Neuroendocrinol; 2011 Aug; 23(8):725-32. PubMed ID: 21623959
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The pars tuberalis: The site of the circannual clock in mammals?
    Wood S; Loudon A
    Gen Comp Endocrinol; 2018 Mar; 258():222-235. PubMed ID: 28669798
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Discontinuity in the molecular neuroendocrine response to increasing daylengths in Ile-de-France ewes: Is transient Dio2 induction a key feature of circannual timing?
    Dardente H; Lomet D; Chesneau D; Pellicer-Rubio MT; Hazlerigg D
    J Neuroendocrinol; 2019 Aug; 31(8):e12775. PubMed ID: 31340078
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ancestral TSH mechanism signals summer in a photoperiodic mammal.
    Hanon EA; Lincoln GA; Fustin JM; Dardente H; Masson-Pévet M; Morgan PJ; Hazlerigg DG
    Curr Biol; 2008 Aug; 18(15):1147-52. PubMed ID: 18674911
    [TBL] [Abstract][Full Text] [Related]  

  • 19. MT1 melatonin receptor mRNA expressing cells in the pars tuberalis of the European hamster: effect of photoperiod.
    Dardente H; Klosen P; Pévet P; Masson-Pévet M
    J Neuroendocrinol; 2003 Aug; 15(8):778-86. PubMed ID: 12834439
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Clock genes in calendar cells as the basis of annual timekeeping in mammals--a unifying hypothesis.
    Lincoln GA; Andersson H; Loudon A
    J Endocrinol; 2003 Oct; 179(1):1-13. PubMed ID: 14529560
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.