These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

67 related articles for article (PubMed ID: 21130065)

  • 21. Binding affinity and inhibitory potency of neomycin and streptomycin on the Tat peptide interaction with HIV-1 TAR RNA detected by on-line acoustic wave sensor.
    Tassew N; Thompson M
    Org Biomol Chem; 2003 Oct; 1(19):3268-70. PubMed ID: 14584788
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Structure of a low-population binding intermediate in protein-RNA recognition.
    Borkar AN; Bardaro MF; Camilloni C; Aprile FA; Varani G; Vendruscolo M
    Proc Natl Acad Sci U S A; 2016 Jun; 113(26):7171-6. PubMed ID: 27286828
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Recognition of HIV-TAR RNA using neomycin-benzimidazole conjugates.
    Ranjan N; Kumar S; Watkins D; Wang D; Appella DH; Arya DP
    Bioorg Med Chem Lett; 2013 Oct; 23(20):5689-93. PubMed ID: 24012122
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Forced intercalation-induced light-up peptides as fluorogenic indicators for the HIV-1 TAR RNA-ligand assay.
    Lee ETT; Sato Y; Ujuagu AF; Nishizawa S
    Analyst; 2024 Aug; 149(16):4179-4186. PubMed ID: 38860915
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effect of each guanidinium group on the RNA recognition and cellular uptake of Tat-derived peptides.
    Wu CH; Weng MH; Chang HC; Li JH; Cheng RP
    Bioorg Med Chem; 2014 Jun; 22(11):3016-20. PubMed ID: 24767816
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effect of lysine methylation and acetylation on the RNA recognition and cellular uptake of Tat-derived peptides.
    Liu MC; Chen CY; Chiang CH; Wang WM; Cheng RP
    Bioorg Med Chem; 2016 Nov; 24(21):5047-5051. PubMed ID: 27670097
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Protein-DNA interactions under high-pressure conditions, studied by capillary narrow-tube electrophoresis.
    Kawano H; Nakasone K; Abe F; Kato C; Yoshida Y; Usami R; Horikoshi K
    Biosci Biotechnol Biochem; 2005 Jul; 69(7):1415-7. PubMed ID: 16041150
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Native gel electrophoresis to study the binding and release of RNA polymerase by 6S RNA.
    Wassarman KM
    Methods Mol Biol; 2012; 905():259-71. PubMed ID: 22736010
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Microfluidic screening of electrophoretic mobility shifts elucidates riboswitch binding function.
    Karns K; Vogan JM; Qin Q; Hickey SF; Wilson SC; Hammond MC; Herr AE
    J Am Chem Soc; 2013 Feb; 135(8):3136-43. PubMed ID: 23343213
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Design, Synthesis, and Evaluation of Neomycin-Imidazole Conjugates for RNA Cleavage.
    Martin C; Bonnet M; Patino N; Azoulay S; Di Giorgio A; Duca M
    Chempluschem; 2022 Nov; 87(11):e202200250. PubMed ID: 36148854
    [TBL] [Abstract][Full Text] [Related]  

  • 31. High-throughput electrophoretic mobility shift assays for quantitative analysis of molecular binding reactions.
    Pan Y; Duncombe TA; Kellenberger CA; Hammond MC; Herr AE
    Anal Chem; 2014 Oct; 86(20):10357-64. PubMed ID: 25233437
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Development of a novel nonradiometric assay for nucleic acid binding to TDP-43 suitable for high-throughput screening using AlphaScreen technology.
    Cassel JA; Blass BE; Reitz AB; Pawlyk AC
    J Biomol Screen; 2010 Oct; 15(9):1099-106. PubMed ID: 20855563
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Microfluidic electrophoretic mobility shift assays for quantitative biochemical analysis.
    Pan Y; Karns K; Herr AE
    Electrophoresis; 2014 Aug; 35(15):2078-90. PubMed ID: 24591076
    [TBL] [Abstract][Full Text] [Related]  

  • 34. High-performance virtual screening by targeting a high-resolution RNA dynamic ensemble.
    Ganser LR; Lee J; Rangadurai A; Merriman DK; Kelly ML; Kansal AD; Sathyamoorthy B; Al-Hashimi HM
    Nat Struct Mol Biol; 2018 May; 25(5):425-434. PubMed ID: 29728655
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Mobility-shift analysis with microfluidics chips.
    Clark J; Shevchuk T; Swiderski PM; Dabur R; Crocitto LE; Buryanov YI; Smith SS
    Biotechniques; 2003 Sep; 35(3):548-54. PubMed ID: 14513560
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Mobility shift-based electrophoresis coupled with fluorescent detection enables real-time enzyme analysis of carbohydrate sulfatase activity.
    Byrne DP; London JA; Eyers PA; Yates EA; Cartmell A
    Biochem J; 2021 Feb; 478(4):735-748. PubMed ID: 33480417
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A Platform to Enable the Pharmacological Profiling of Small Molecules in Gel-Based Electrophoretic Mobility Shift Assays.
    Foley TL; Dorjsuren D; Dexheimer TS; Burkart MD; Wight WC; Simeonov A
    J Biomol Screen; 2016 Dec; 21(10):1125-1131. PubMed ID: 27269812
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Biophysical Characterisation and Quantification of Nucleic Acid-Protein Interactions: EMSA, MST and SPR.
    Flores JK; Kariawasam R; Gimenez AX; Helder S; Cubeddu L; Gamsjaeger R; Ataide SF
    Curr Protein Pept Sci; 2015; 16(8):727-34. PubMed ID: 25961399
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Quantitative analysis of protein-RNA interactions by gel mobility shift.
    Ryder SP; Recht MI; Williamson JR
    Methods Mol Biol; 2008; 488():99-115. PubMed ID: 18982286
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Electrophoretic mobility shift assays (EMSAs) for in vitro detection of protein-nucleic acid interactions.
    Mansouri-Noori F; Bayfield MA
    STAR Protoc; 2024 Jun; 5(2):103128. PubMed ID: 38875114
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.