BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 2113031)

  • 21. Is thioredoxin the physiological vitamin K epoxide reducing agent?
    Preusch PC
    FEBS Lett; 1992 Jul; 305(3):257-9. PubMed ID: 1299627
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Possible role of DT-diaphorase in the bioactivation of antitumor quinones.
    Talcott RE; Rosenblum M; Levin VA
    Biochem Biophys Res Commun; 1983 Feb; 111(1):346-51. PubMed ID: 6187345
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The enzymology of doxorubicin quinone reduction in tumour tissue.
    Cummings J; Allan L; Willmott N; Riley R; Workman P; Smyth JF
    Biochem Pharmacol; 1992 Dec; 44(11):2175-83. PubMed ID: 1472082
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Vitamin K-dependent carboxylation and vitamin K epoxidation. Evidence that the warfarin-sensitive microsomal NAD(P)H dehydrogenase reduces vitamin K1 in these reactions.
    Wallin R; Suttie JW
    Biochem J; 1981 Mar; 194(3):983-8. PubMed ID: 7306037
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Rat and human liver vitamin K epoxide reductase: inhibition by thiol blockers and vitamin K1.
    Wallin R; Patrick SD; Martin LF
    Int J Biochem; 1987; 19(11):1063-8. PubMed ID: 3428478
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Enzymatic and molecular aspects of the antioxidant effect of menadione in hepatic microsomes.
    Tampo Y; Yonaha M
    Arch Biochem Biophys; 1996 Oct; 334(1):163-74. PubMed ID: 8837752
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Vitamin K-dependent carboxylation. Evidence that at least two microsomal dehydrogenases reduce vitamin K1 to support carboxylation.
    Wallin R; Hutson S
    J Biol Chem; 1982 Feb; 257(4):1583-6. PubMed ID: 6799508
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Tissue distribution and warfarin sensitivity of vitamin K epoxide reductase.
    Hazelett SE; Preusch PC
    Biochem Pharmacol; 1988 Mar; 37(5):929-34. PubMed ID: 3345202
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Bioreductive activation of catechol estrogen-ortho-quinones: aromatization of the B ring in 4-hydroxyequilenin markedly alters quinoid formation and reactivity.
    Shen L; Pisha E; Huang Z; Pezzuto JM; Krol E; Alam Z; van Breemen RB; Bolton JL
    Carcinogenesis; 1997 May; 18(5):1093-101. PubMed ID: 9163701
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Evidence that warfarin anticoagulant action involves two distinct reductase activities.
    Fasco MJ; Hildebrandt EF; Suttie JW
    J Biol Chem; 1982 Oct; 257(19):11210-2. PubMed ID: 6811577
    [TBL] [Abstract][Full Text] [Related]  

  • 31. NAD(P)H dehydrogenase and its role in the vitamin K (2-methyl-3-phytyl-1,4-naphthaquinone)-dependent carboxylation reaction.
    Wallin R; Gebhardt O; Prydz H
    Biochem J; 1978 Jan; 169(1):95-101. PubMed ID: 629756
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Quinone oxidoreductases and vitamin K metabolism.
    Gong X; Gutala R; Jaiswal AK
    Vitam Horm; 2008; 78():85-101. PubMed ID: 18374191
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Structural Insights into Phylloquinone (Vitamin K1), Menaquinone (MK4, MK7), and Menadione (Vitamin K3) Binding to VKORC1.
    Chatron N; Hammed A; BenoƮt E; Lattard V
    Nutrients; 2019 Jan; 11(1):. PubMed ID: 30609653
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Metabolism of vitamin K and vitamin K 2,3-epoxide via interaction with a common disulfide.
    Lee JJ; Fasco MJ
    Biochemistry; 1984 May; 23(10):2246-52. PubMed ID: 6733086
    [TBL] [Abstract][Full Text] [Related]  

  • 35. On the mechanism of the Mn3(+)-induced neurotoxicity of dopamine:prevention of quinone-derived oxygen toxicity by DT diaphorase and superoxide dismutase.
    Segura-Aguilar J; Lind C
    Chem Biol Interact; 1989; 72(3):309-24. PubMed ID: 2557982
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Warfarin inhibition of vitamin K 2,3-epoxide reductase in rat liver microsomes.
    Fasco MJ; Principe LM; Walsh WA; Friedman PA
    Biochemistry; 1983 Nov; 22(24):5655-60. PubMed ID: 6652076
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Menadione- (2-methyl-1,4-naphthoquinone-) dependent enzymatic redox cycling and calcium release by mitochondria.
    Frei B; Winterhalter KH; Richter C
    Biochemistry; 1986 Jul; 25(15):4438-43. PubMed ID: 3092856
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Formation of 3-hydroxy-2,3-dihydrovitamin K1 in vivo: relationship to vitamin K epoxide reductase and warfarin resistance.
    Preusch PC; Suttie JW
    J Nutr; 1984 May; 114(5):902-10. PubMed ID: 6726460
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Purification of NADPH-linked and NADH-linked quinone reductases from liver cytosol of sea bream, Pagrus major.
    Kitamura S; Tatsumi K
    Comp Biochem Physiol B Biochem Mol Biol; 1997 Nov; 118(3):675-80. PubMed ID: 9467879
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The role of NAD(P)H: quinone reductase (EC 1.6.99.2, DT-diaphorase) in the reductive bioactivation of the novel indoloquinone antitumor agent EO9.
    Walton MI; Smith PJ; Workman P
    Cancer Commun; 1991 Jul; 3(7):199-206. PubMed ID: 1714284
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.