These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

200 related articles for article (PubMed ID: 21130459)

  • 1. Forces and deformations of the abdominal wall--a mechanical and geometrical approach to the linea alba.
    Förstemann T; Trzewik J; Holste J; Batke B; Konerding MA; Wolloscheck T; Hartung C
    J Biomech; 2011 Feb; 44(4):600-6. PubMed ID: 21130459
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Uniaxial and biaxial mechanical properties of porcine linea alba.
    Cooney GM; Moerman KM; Takaza M; Winter DC; Simms CK
    J Mech Behav Biomed Mater; 2015 Jan; 41():68-82. PubMed ID: 25460404
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Determination of passive viscoelastic response of the abdominal muscle and related constitutive modeling: stress-relaxation behavior.
    Calvo B; Sierra M; Grasa J; Muñoz MJ; Peña E
    J Mech Behav Biomed Mater; 2014 Aug; 36():47-58. PubMed ID: 24793173
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Anisotropy of human linea alba: a biomechanical study.
    Grässel D; Prescher A; Fitzek S; Keyserlingk DG; Axer H
    J Surg Res; 2005 Mar; 124(1):118-25. PubMed ID: 15734489
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Uniaxial and biaxial tensile stress-stretch response of human linea alba.
    Cooney GM; Lake SP; Thompson DM; Castile RM; Winter DC; Simms CK
    J Mech Behav Biomed Mater; 2016 Oct; 63():134-140. PubMed ID: 27367944
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A finite element model for direction-dependent mechanical response to nanoindentation of cortical bone allowing for anisotropic post-yield behavior of the tissue.
    Carnelli D; Gastaldi D; Sassi V; Contro R; Ortiz C; Vena P
    J Biomech Eng; 2010 Aug; 132(8):081008. PubMed ID: 20670057
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Experimental characterization and constitutive modeling of the mechanical behavior of the human trachea.
    Trabelsi O; del Palomar AP; López-Villalobos JL; Ginel A; Doblaré M
    Med Eng Phys; 2010 Jan; 32(1):76-82. PubMed ID: 19926513
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanical properties of the abdominal wall and biomaterials utilized for hernia repair.
    Deeken CR; Lake SP
    J Mech Behav Biomed Mater; 2017 Oct; 74():411-427. PubMed ID: 28692907
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanical anisotropy of inflated elastic tissue from the pig aorta.
    Lillie MA; Shadwick RE; Gosline JM
    J Biomech; 2010 Aug; 43(11):2070-8. PubMed ID: 20430395
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Estimating material parameters of human skin in vivo.
    Kvistedal YA; Nielsen PM
    Biomech Model Mechanobiol; 2009 Feb; 8(1):1-8. PubMed ID: 18040732
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stomach stress and strain depend on location, direction and the layered structure.
    Zhao J; Liao D; Chen P; Kunwald P; Gregersen H
    J Biomech; 2008 Dec; 41(16):3441-7. PubMed ID: 19004444
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effects of aneurysm on the biaxial mechanical behavior of human abdominal aorta.
    Vande Geest JP; Sacks MS; Vorp DA
    J Biomech; 2006; 39(7):1324-34. PubMed ID: 15885699
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluating patient-specific abdominal aortic aneurysm wall stress based on flow-induced loading.
    Dorfmann A; Wilson C; Edgar ES; Peattie RA
    Biomech Model Mechanobiol; 2010 Apr; 9(2):127-39. PubMed ID: 19578914
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of the anisotropic mechanical behavior of human abdominal wall connective tissues.
    Astruc L; De Meulaere M; Witz JF; Nováček V; Turquier F; Hoc T; Brieu M
    J Mech Behav Biomed Mater; 2018 Jun; 82():45-50. PubMed ID: 29567529
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Indentation versus tensile measurements of Young's modulus for soft biological tissues.
    McKee CT; Last JA; Russell P; Murphy CJ
    Tissue Eng Part B Rev; 2011 Jun; 17(3):155-64. PubMed ID: 21303220
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A new three-dimensional exponential material model of the coronary arterial wall to include shear stress due to torsion.
    Van Epps JS; Vorp DA
    J Biomech Eng; 2008 Oct; 130(5):051001. PubMed ID: 19045508
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Experimental testing and constitutive modeling of the mechanical properties of the swine skin tissue.
    Łagan SD; Liber-Kneć A
    Acta Bioeng Biomech; 2017; 19(2):93-102. PubMed ID: 28869629
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The relationship between Shore hardness of elastomeric dental materials and Young's modulus.
    Meththananda IM; Parker S; Patel MP; Braden M
    Dent Mater; 2009 Aug; 25(8):956-9. PubMed ID: 19286248
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of the mechanical properties of a dermal equivalent compared with human skin in vivo by indentation and static friction tests.
    Zahouani H; Pailler-Mattei C; Sohm B; Vargiolu R; Cenizo V; Debret R
    Skin Res Technol; 2009 Feb; 15(1):68-76. PubMed ID: 19152581
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tensile properties of the mandibular condylar cartilage.
    Singh M; Detamore MS
    J Biomech Eng; 2008 Feb; 130(1):011009. PubMed ID: 18298185
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.