BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 21130662)

  • 1. Functional in vivo imaging of cysteine cathepsin activity in murine model of inflammation.
    Caglič D; Globisch A; Kindermann M; Lim NH; Jeske V; Juretschke HP; Bartnik E; Weithmann KU; Nagase H; Turk B; Wendt KU
    Bioorg Med Chem; 2011 Feb; 19(3):1055-61. PubMed ID: 21130662
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Design, characterization and cellular uptake studies of fluorescence-labeled prototypic cathepsin inhibitors.
    Kohl F; Schmitz J; Furtmann N; Schulz-Fincke AC; Mertens MD; Küppers J; Benkhoff M; Tobiasch E; Bartz U; Bajorath J; Stirnberg M; Gütschow M
    Org Biomol Chem; 2015 Nov; 13(41):10310-23. PubMed ID: 26307943
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Noninvasive quantitative tomography of the therapeutic response to dexamethasone in ovalbumin-induced murine asthma.
    Korideck H; Peterson JD
    J Pharmacol Exp Ther; 2009 Jun; 329(3):882-9. PubMed ID: 19293392
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Noninvasive optical imaging of cysteine protease activity using fluorescently quenched activity-based probes.
    Blum G; von Degenfeld G; Merchant MJ; Blau HM; Bogyo M
    Nat Chem Biol; 2007 Oct; 3(10):668-77. PubMed ID: 17828252
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Revealing the inhibitory potential of Yersinia enterocolitica on cysteine proteases of the papain family.
    Kędzior M; Pawlak A; Seredyński R; Bania J; Platt-Samoraj A; Czemplik M; Klausa E; Bugla-Płoskońska G; Gutowicz J
    Microbiol Res; 2018 Mar; 207():211-225. PubMed ID: 29458857
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cathepsins X and B display distinct activity profiles that can be exploited for inhibitor design.
    Ménard R; Therrien C; Lachance P; Sulea T; Qo H; Alvarez-Hernandez AD; Roush WR
    Biol Chem; 2001 May; 382(5):839-45. PubMed ID: 11517939
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The consequences of lysosomotropism on the design of selective cathepsin K inhibitors.
    Black WC; Percival MD
    Chembiochem; 2006 Oct; 7(10):1525-35. PubMed ID: 16921579
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cysteine protease cathepsins in cardiovascular disease: from basic research to clinical trials.
    Liu CL; Guo J; Zhang X; Sukhova GK; Libby P; Shi GP
    Nat Rev Cardiol; 2018 Jun; 15(6):351-370. PubMed ID: 29679024
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cysteine cathepsin proteases as pharmacological targets in cancer.
    Palermo C; Joyce JA
    Trends Pharmacol Sci; 2008 Jan; 29(1):22-8. PubMed ID: 18037508
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In vivo imaging of intraperitoneally disseminated tumors in model mice by using activatable fluorescent small-molecular probes for activity of cathepsins.
    Fujii T; Kamiya M; Urano Y
    Bioconjug Chem; 2014 Oct; 25(10):1838-46. PubMed ID: 25196809
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inhibition of the cathepsin cysteine proteases B and K by square-planar cycloaurated gold(III) compounds and investigation of their anti-cancer activity.
    Zhu Y; Cameron BR; Mosi R; Anastassov V; Cox J; Qin L; Santucci Z; Metz M; Skerlj RT; Fricker SP
    J Inorg Biochem; 2011 May; 105(5):754-62. PubMed ID: 21481817
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structure-based design of cathepsin K inhibitors containing a benzyloxy-substituted benzoyl peptidomimetic.
    Thompson SK; Smith WW; Zhao B; Halbert SM; Tomaszek TA; Tew DG; Levy MA; Janson CA; DAlessio KJ; McQueney MS; Kurdyla J; Jones CS; DesJarlais RL; Abdel-Meguid SS; Veber DF
    J Med Chem; 1998 Oct; 41(21):3923-7. PubMed ID: 9767629
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Prodrug-inspired probes selective to cathepsin B over other cysteine cathepsins.
    Chowdhury MA; Moya IA; Bhilocha S; McMillan CC; Vigliarolo BG; Zehbe I; Phenix CP
    J Med Chem; 2014 Jul; 57(14):6092-104. PubMed ID: 24940640
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Design of potent, selective, and orally bioavailable inhibitors of cysteine protease cathepsin k.
    Tavares FX; Boncek V; Deaton DN; Hassell AM; Long ST; Miller AB; Payne AA; Miller LR; Shewchuk LM; Wells-Knecht K; Willard DH; Wright LL; Zhou HQ
    J Med Chem; 2004 Jan; 47(3):588-99. PubMed ID: 14736240
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fluorescent nitrile-based inhibitors of cysteine cathepsins.
    Frizler M; Mertens MD; Gütschow M
    Bioorg Med Chem Lett; 2012 Dec; 22(24):7715-8. PubMed ID: 23122525
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cysteine Protease Zymography: Brief Review.
    Wilkesman J
    Methods Mol Biol; 2017; 1626():25-31. PubMed ID: 28608197
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Conformationally constrained 1,3-diamino ketones: a series of potent inhibitors of the cysteine protease cathepsin K.
    Marquis RW; Yamashita DS; Ru Y; LoCastro SM; Oh HJ; Erhard KF; DesJarlais RL; Head MS; Smith WW; Zhao B; Janson CA; Abdel-Meguid SS; Tomaszek TA; Levy MA; Veber DF
    J Med Chem; 1998 Sep; 41(19):3563-7. PubMed ID: 9733481
    [No Abstract]   [Full Text] [Related]  

  • 18. The role of cathepsins in osteoporosis and arthritis: rationale for the design of new therapeutics.
    Yasuda Y; Kaleta J; Brömme D
    Adv Drug Deliv Rev; 2005 May; 57(7):973-93. PubMed ID: 15876399
    [TBL] [Abstract][Full Text] [Related]  

  • 19.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 8.