BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 2113085)

  • 1. Physiological differences between strong and weak frog neuromuscular junctions: a study involving tetanic and posttetanic potentiation.
    Pawson PA; Grinnell AD
    J Neurosci; 1990 Jun; 10(6):1769-78. PubMed ID: 2113085
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dependence of spontaneous release at frog junctions on synaptic strength, external calcium and terminal length.
    Grinnell AD; Pawson PA
    J Physiol; 1989 Nov; 418():397-410. PubMed ID: 2576068
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Oscillation period of MEPP frequency at frog neuromuscular junctions is inversely correlated with release efficacy and independent of acute Ca2+ loading.
    Pawson PA; Grinnell AD
    Proc R Soc Lond B Biol Sci; 1989 Sep; 237(1289):489-99. PubMed ID: 2573902
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ionic basis of tetanic and post-tetanic potentiation at a mammalian neuromuscular junction.
    Nussinovitch I; Rahamimoff R
    J Physiol; 1988 Feb; 396():435-55. PubMed ID: 2457692
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Posttetanic potentiation in strong and weak neuromuscular junctions: physiological differences caused by a differential Ca2+-influx.
    Pawson PA; Grinnell AD
    Brain Res; 1984 Dec; 323(2):311-5. PubMed ID: 6098343
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Changes in miniature endplate potential frequency during repetitive nerve stimulation in the presence of Ca2+, Ba2+, and Sr2+ at the frog neuromuscular junction.
    Zengel JE; Magleby KL
    J Gen Physiol; 1981 May; 77(5):503-29. PubMed ID: 6262429
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Changes in MEPP frequency during depression of evoked release at the frog neuromuscular junction.
    Zengel JE; Sosa MA
    J Physiol; 1994 Jun; 477(Pt 2):267-77. PubMed ID: 7932218
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Elevated tonicity increases miniature end-plate potential frequency during tetanic stimulation at frog neuromuscular junction in low calcium and in manganese saline solutions.
    Narita K; Kita H; van der Kloot W
    Brain Res; 1983 Dec; 289(1-2):79-85. PubMed ID: 6318905
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Posttetanic potentiation at the crayfish neuromuscular junction is dependent on both intracellular calcium and sodium ion accumulation.
    Mulkey RM; Zucker RS
    J Neurosci; 1992 Nov; 12(11):4327-36. PubMed ID: 1432097
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Aging increases calcium influx at motor nerve terminal.
    Alshuaib WB; Fahim MA
    Int J Dev Neurosci; 1990; 8(6):655-66. PubMed ID: 2126908
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Measurement of quantal secretion induced by ouabain and its correlation with depletion of synaptic vesicles.
    Haimann C; Torri-Tarelli F; Fesce R; Ceccarelli B
    J Cell Biol; 1985 Nov; 101(5 Pt 1):1953-65. PubMed ID: 3932368
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The thiol-oxidizing agent diamide increases transmitter release by decreasing calcium requirements for neuromuscular transmission in the frog.
    Carlen PL; Kosower EM; Werman R
    Brain Res; 1976 Nov; 117(2):257-76. PubMed ID: 186154
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effect of dantrolene on tetanic potentiation of MEPP frequency in EGTA containing salines.
    Publicover SJ
    Brain Res; 1982 Dec; 253(1-2):321-4. PubMed ID: 6295555
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Barbiturates and transmitter release at the frog neuromuscular junction.
    Pincus JH; Insler NF
    Brain Res; 1981 May; 213(1):127-37. PubMed ID: 6113031
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spontaneous and evoked transmitter releases after concanavalin A treatment are affected differently by hypertonic low calcium solutions at frog neuromuscular junction.
    Narita K; Kawasaki F; Kita H
    Brain Res; 1990 Mar; 512(1):33-9. PubMed ID: 2337806
    [TBL] [Abstract][Full Text] [Related]  

  • 16. On the mechanism by which phenytoin blocks post-tetanic potentiation at the frog neuromuscular junction.
    Selzer ME; David G; Yaari Y
    J Neurosci; 1985 Nov; 5(11):2894-9. PubMed ID: 4056860
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dual effects of theophylline on spontaneous transmitter release from frog motor nerve terminals.
    Barry SR
    J Neurosci; 1988 Dec; 8(12):4427-33. PubMed ID: 2904489
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ca(2+)-dependent and -independent components of transmitter release at the frog neuromuscular junction.
    Tanabe N; Kijima H
    J Physiol; 1992 Sep; 455():271-89. PubMed ID: 1484356
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tetanic stimulation increases the frequency of miniature end-plate potentials at the frog neuromuscular junction in Mn2+-, CO2+-, and Ni2+-saline solutions.
    Kita H; Narita K; Van der Kloot W
    Brain Res; 1981 Jan; 205(1):111-21. PubMed ID: 6258705
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The action of the sodium ionophore, monensin, or transmitter release at the frog neuromuscular junction.
    Meiri H; Erulkar SD; Lerman T; Rahamimoff R
    Brain Res; 1981 Jan; 204(1):204-8. PubMed ID: 6113873
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.