These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 2113085)

  • 41. Spontaneous acetylcholine release in mammalian neuromuscular junctions.
    Losavio A; Muchnik S
    Am J Physiol; 1997 Dec; 273(6):C1835-41. PubMed ID: 9435487
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Stimulation of frequency of MEPPs at the frog neuromuscular junction by extracellular EGTA.
    Publicover SJ; Duncan CJ
    Naunyn Schmiedebergs Arch Pharmacol; 1980; 315(1):29-35. PubMed ID: 6787438
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Ionic mechanism of post-tetanic potentiation at the neuromuscular junction of the frog.
    Weinreich D
    J Physiol; 1971 Jan; 212(2):431-46. PubMed ID: 4323307
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Effects of changes in motor unit size on transmitter release at the frog neuromuscular junction.
    Herrera AA; Grinnell AD
    J Neurosci; 1985 Jul; 5(7):1896-900. PubMed ID: 2862227
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Temperature-sensitive aspects of evoked and spontaneous transmitter release at the frog neuromuscular junction.
    Barrett EF; Barrett JN; Botz D; Chang DB; Mahaffey D
    J Physiol; 1978 Jun; 279():253-73. PubMed ID: 209175
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Neuromodulation of activity-dependent synaptic enhancement at crayfish neuromuscular junction.
    Qian SM; Delaney KR
    Brain Res; 1997 Oct; 771(2):259-70. PubMed ID: 9401746
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Differences in transmitter release and number of nerve terminals per motoneuron between two frog muscles.
    Yao YM; Weakly JN
    J Neurosci; 1986 Feb; 6(2):498-506. PubMed ID: 3485190
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Nicotinic agonists antagonize quantal size increases and evoked release at frog neuromuscular junction.
    Van der Kloot W
    J Physiol; 1993 Aug; 468():567-89. PubMed ID: 8254525
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Delayed increase of acetylcholine quantal size induced by the activity-dependent release of endogenous CGRP but not ATP in neuromuscular junctions.
    Bogacheva P; Balezina O
    Synapse; 2020 Dec; 74(12):e22175. PubMed ID: 32478912
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Nerve activity but not intracellular calcium determines the time course of endocytosis at the frog neuromuscular junction.
    Wu LG; Betz WJ
    Neuron; 1996 Oct; 17(4):769-79. PubMed ID: 8893033
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Calcium-independent increase of transmitter release at frog end-plate by trinitrobenzene sulphonic acid.
    Kijima H; Tanabe N
    J Physiol; 1988 Sep; 403():135-49. PubMed ID: 3150982
    [TBL] [Abstract][Full Text] [Related]  

  • 52. The effect of tetanic and post-tetanic potentiation on facilitation of transmitter release at the frog neuromuscular junction.
    Magleby KL
    J Physiol; 1973 Oct; 234(2):353-71. PubMed ID: 4358352
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Double mode of action of black widow spider venom on frog neuromuscular junction.
    Gorio A; Rubin LL; Mauro A
    J Neurocytol; 1978 Apr; 7(2):193-202. PubMed ID: 25951
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Post-tetanic potentiation of GABAergic IPSCs in cultured rat hippocampal neurones.
    Jensen K; Jensen MS; Lambert JD
    J Physiol; 1999 Aug; 519 Pt 1(Pt 1):71-84. PubMed ID: 10432340
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Differences in synaptic efficacy at neuromuscular junctions in frog twitch muscles.
    Banner LR; Herrera AA
    J Physiol; 1986 Oct; 379():205-15. PubMed ID: 2882018
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Correlations between active zone ultrastructure and synaptic function studied with freeze-fracture of physiologically identified neuromuscular junctions.
    Propst JW; Ko CP
    J Neurosci; 1987 Nov; 7(11):3654-64. PubMed ID: 3500282
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Differential effects of an L-type Ca2+ channel antagonist on activity- and phosphorylation-enhanced release of acetylcholine at the neuromuscular junction of the frog in vitro.
    Arenson MS; Gill DS
    Eur J Neurosci; 1996 Mar; 8(3):437-45. PubMed ID: 8963434
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Interrelation between MEPP amplitude and MEPP frequency in different regions along the frog neuromuscular junction.
    Robitaille R; Tremblay JP; Grenon G
    Brain Res; 1987 Apr; 408(1-2):353-8. PubMed ID: 3036304
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Bacterial lipopolysaccharide depresses spontaneous, evoked, and ionophore-induced transmitter release at the neuromuscular junction.
    Person RJ
    J Neurosci Res; 1979; 4(2):105-14. PubMed ID: 229236
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Calcium dependence of evoked transmitter release at very low quantal contents at the frog neuromuscular junction.
    Andreu R; Barrett EF
    J Physiol; 1980 Nov; 308():79-97. PubMed ID: 6112267
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.