BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

97 related articles for article (PubMed ID: 21130895)

  • 1. Activity and function of rabbit muscle-specific creatine kinase at low temperature by mutation at gly268 to asn268.
    Wu CL; Li YH; Lin HC; Yeh YH; Yan HY; Hsiao CD; Hui CF; Wu JL
    Comp Biochem Physiol B Biochem Mol Biol; 2011 Mar; 158(3):189-98. PubMed ID: 21130895
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The activity of carp muscle-specific creatine kinase at low temperature is enhanced by decreased hydrophobicity of residue 268.
    Wu CL; Li BY; Wu JL; Hui CF
    Physiol Biochem Zool; 2014; 87(4):507-16. PubMed ID: 24940915
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of the single point genetic mutation D54G on muscle creatine kinase activity, structure and stability.
    Feng S; Zhao TJ; Zhou HM; Yan YB
    Int J Biochem Cell Biol; 2007; 39(2):392-401. PubMed ID: 17030001
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rabbit muscle creatine kinase: consequences of the mutagenesis of conserved histidine residues.
    Chen LH; Borders CL; Vásquez JR; Kenyon GL
    Biochemistry; 1996 Jun; 35(24):7895-902. PubMed ID: 8672491
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Role of the linker between the N- and C-terminal domains in the stability and folding of rabbit muscle creatine kinase.
    He HW; Feng S; Pang M; Zhou HM; Yan YB
    Int J Biochem Cell Biol; 2007; 39(10):1816-27. PubMed ID: 17616428
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Impact of intra-subunit domain-domain interactions on creatine kinase activity and stability.
    Zhao TJ; Feng S; Wang YL; Liu Y; Luo XC; Zhou HM; Yan YB
    FEBS Lett; 2006 Jul; 580(16):3835-40. PubMed ID: 16797013
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The role of Arg-96 in Danio rerio creatine kinase in substrate recognition and active center configuration.
    Uda K; Kuwasaki A; Shima K; Matsumoto T; Suzuki T
    Int J Biol Macromol; 2009 Jun; 44(5):413-8. PubMed ID: 19428475
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mutational analysis of Thermus caldophilus GK24 beta-glycosidase: role of His119 in substrate binding and enzyme activity.
    Oh EJ; Lee YJ; Chol JJ; Seo MS; Lee MS; Kim GA; Kwon ST
    J Microbiol Biotechnol; 2008 Feb; 18(2):287-94. PubMed ID: 18309273
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparison of kinetic constants of creatine kinase isoforms.
    Matsushima K; Uda K; Ishida K; Kokufuta C; Iwasaki N; Suzuki T
    Int J Biol Macromol; 2006 Mar; 38(2):83-8. PubMed ID: 16451808
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The monovalent cation requirement of rabbit muscle pyruvate kinase is eliminated by substitution of lysine for glutamate 117.
    Laughlin LT; Reed GH
    Arch Biochem Biophys; 1997 Dec; 348(2):262-7. PubMed ID: 9434737
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The 1.5 A resolution crystal structure of the carbamate kinase-like carbamoyl phosphate synthetase from the hyperthermophilic Archaeon pyrococcus furiosus, bound to ADP, confirms that this thermostable enzyme is a carbamate kinase, and provides insight into substrate binding and stability in carbamate kinases.
    Ramón-Maiques S; Marina A; Uriarte M; Fita I; Rubio V
    J Mol Biol; 2000 Jun; 299(2):463-76. PubMed ID: 10860751
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Disrupting of E79 and K138 interaction is responsible for human muscle creatine kinase deficiency diseases.
    Wu QY; Li F; Guo HY; Cao J; Chen C; Chen W; Zeng LY; Li ZY; Wang XY; Xu KL
    Int J Biol Macromol; 2013 Mar; 54():216-24. PubMed ID: 23274523
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Despite its high similarity with monomeric arginine kinase, muscle creatine kinase is only enzymatically active as a dimer.
    Awama AM; Mazon H; Vial C; Marcillat O
    Arch Biochem Biophys; 2007 Feb; 458(2):158-66. PubMed ID: 17239811
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural asymmetry and intersubunit communication in muscle creatine kinase.
    Ohren JF; Kundracik ML; Borders CL; Edmiston P; Viola RE
    Acta Crystallogr D Biol Crystallogr; 2007 Mar; 63(Pt 3):381-9. PubMed ID: 17327675
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dissecting the key residues crucial for the species-specific thermostability of muscle-type creatine kinase.
    Gao YS; Wang Y; Li C; Chen Z; Yan YB; Zhou HM
    Int J Biol Macromol; 2010 Oct; 47(3):366-70. PubMed ID: 20558199
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spontaneous chemical reversion of an active site mutation: deamidation of an asparagine residue replacing the catalytic aspartic acid of glutamate dehydrogenase.
    Paradisi F; Dean JL; Geoghegan KF; Engel PC
    Biochemistry; 2005 Mar; 44(9):3636-43. PubMed ID: 15736973
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Increased D-allose production by the R132E mutant of ribose-5-phosphate isomerase from Clostridium thermocellum.
    Yeom SJ; Seo ES; Kim YS; Oh DK
    Appl Microbiol Biotechnol; 2011 Mar; 89(6):1859-66. PubMed ID: 21132286
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of a mutant Bacillus subtilis adenylosuccinate lyase equivalent to a mutant enzyme found in human adenylosuccinate lyase deficiency: asparagine 276 plays an important structural role.
    Palenchar JB; Colman RF
    Biochemistry; 2003 Feb; 42(7):1831-41. PubMed ID: 12590570
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Novel inhibitor for prolyl tripeptidyl aminopeptidase from Porphyromonas gingivalis and details of substrate-recognition mechanism.
    Xu Y; Nakajima Y; Ito K; Zheng H; Oyama H; Heiser U; Hoffmann T; Gärtner UT; Demuth HU; Yoshimoto T
    J Mol Biol; 2008 Jan; 375(3):708-19. PubMed ID: 18042490
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Role of amino-acid residue 95 in substrate specificity of phosphagen kinases.
    Tanaka K; Suzuki T
    FEBS Lett; 2004 Aug; 573(1-3):78-82. PubMed ID: 15327979
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.