These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

205 related articles for article (PubMed ID: 21131019)

  • 1. Nitrogen removal from wastewater using membrane aerated microbial fuel cell techniques.
    Yu CP; Liang Z; Das A; Hu Z
    Water Res; 2011 Jan; 45(3):1157-64. PubMed ID: 21131019
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Autotrophic nitrogen removal in sequencing batch biofilm reactors at different oxygen supply modes.
    Wantawin C; Juateea J; Noophan PL; Munakata-Marr J
    Water Sci Technol; 2008; 58(10):1889-94. PubMed ID: 19039166
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Analysis of ammonia loss mechanisms in microbial fuel cells treating animal wastewater.
    Kim JR; Zuo Y; Regan JM; Logan BE
    Biotechnol Bioeng; 2008 Apr; 99(5):1120-7. PubMed ID: 17972328
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microbial ecology and performance of ammonia oxidizing bacteria (AOB) in biological processes treating petrochemical wastewater with high strength of ammonia: effect of Na(2)CO(3) addition.
    Whang LM; Yang KH; Yang YF; Han YL; Chen YJ; Cheng SS
    Water Sci Technol; 2009; 59(2):223-31. PubMed ID: 19182331
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular analysis of ammonia-oxidizing bacterial populations in aerated-anoxic orbal processes.
    Park HD; Regan JM; Noguera DR
    Water Sci Technol; 2002; 46(1-2):273-80. PubMed ID: 12216636
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Total nitrogen removal in a hybrid, membrane-aerated activated sludge process.
    Downing LS; Nerenberg R
    Water Res; 2008 Aug; 42(14):3697-708. PubMed ID: 18707749
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microbial fuel cells for simultaneous carbon and nitrogen removal.
    Virdis B; Rabaey K; Yuan Z; Keller J
    Water Res; 2008 Jun; 42(12):3013-24. PubMed ID: 18466949
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nitrogen removal in a single-chamber microbial fuel cell with nitrifying biofilm enriched at the air cathode.
    Yan H; Saito T; Regan JM
    Water Res; 2012 May; 46(7):2215-24. PubMed ID: 22386083
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Scalable microbial fuel cell (MFC) stack for continuous real wastewater treatment.
    Zhuang L; Zheng Y; Zhou S; Yuan Y; Yuan H; Chen Y
    Bioresour Technol; 2012 Feb; 106():82-8. PubMed ID: 22197329
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Long-term operation of membrane biofilm reactors for nitrogen removal with autotrophic bacteria.
    Hwang JH; Cicek N; Oleszkiewicz JA
    Water Sci Technol; 2009; 60(9):2405-12. PubMed ID: 19901473
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Upflow anaerobic sludge blanket reactor--a review.
    Bal AS; Dhagat NN
    Indian J Environ Health; 2001 Apr; 43(2):1-82. PubMed ID: 12397675
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hydrogen and electricity production from a food processing wastewater using fermentation and microbial fuel cell technologies.
    Oh SE; Logan BE
    Water Res; 2005 Nov; 39(19):4673-82. PubMed ID: 16289673
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rice mill wastewater treatment in microbial fuel cells fabricated using proton exchange membrane and earthen pot at different pH.
    Behera M; Jana PS; More TT; Ghangrekar MM
    Bioelectrochemistry; 2010 Oct; 79(2):228-33. PubMed ID: 20615762
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Integration of microbial fuel cell techniques into activated sludge wastewater treatment processes to improve nitrogen removal and reduce sludge production.
    Gajaraj S; Hu Z
    Chemosphere; 2014 Dec; 117():151-7. PubMed ID: 25014565
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Simultaneous carbon and nitrogen removal using a litre-scale upflow microbial fuel cell.
    Zhao LL; Song TS
    Water Sci Technol; 2014; 69(2):293-7. PubMed ID: 24473297
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Improving nitrogen removal in two modified decentralized wastewater systems.
    Liang Z; Nguyen HQ; Das A; Hu Z
    Water Environ Res; 2011 Aug; 83(8):722-30. PubMed ID: 21905409
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Continuous bioelectricity production and sustainable wastewater treatment in a microbial fuel cell constructed with non-catalyzed granular graphite electrodes and permeable membrane.
    Tran HT; Ryu JH; Jia YH; Oh SJ; Choi JY; Park DH; Ahn DH
    Water Sci Technol; 2010; 61(7):1819-27. PubMed ID: 20371941
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ammonia-oxidizing communities in a highly aerated full-scale activated sludge bioreactor: betaproteobacterial dynamics and low relative abundance of Crenarchaea.
    Wells GF; Park HD; Yeung CH; Eggleston B; Francis CA; Criddle CS
    Environ Microbiol; 2009 Sep; 11(9):2310-28. PubMed ID: 19515200
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of pH on nutrient dynamics and electricity production using microbial fuel cells.
    Puig S; Serra M; Coma M; Cabré M; Balaguer MD; Colprim J
    Bioresour Technol; 2010 Dec; 101(24):9594-9. PubMed ID: 20702091
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High-strength nitrogen removal of opto-electronic industrial wastewater in membrane bioreactor--a pilot study.
    Chen TK; Ni CH; Chen JN; Lin J
    Water Sci Technol; 2003; 48(1):191-8. PubMed ID: 12926637
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.