These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 21131093)

  • 1. A high-resolution non-invasive approach to quantify oxygen transport across the capillary fringe and within the underlying groundwater.
    Haberer CM; Rolle M; Liu S; Cirpka OA; Grathwohl P
    J Contam Hydrol; 2011 Mar; 122(1-4):26-39. PubMed ID: 21131093
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Experimental sensitivity analysis of oxygen transfer in the capillary fringe.
    Haberer CM; Cirpka OA; Rolle M; Grathwohl P
    Ground Water; 2014; 52(1):37-49. PubMed ID: 23406417
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Impact of heterogeneity on oxygen transfer in a fluctuating capillary fringe.
    Haberer CM; Rolle M; Cirpka OA; Grathwohl P
    Ground Water; 2015; 53(1):57-70. PubMed ID: 24341670
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Experimental investigation of compound-specific dilution of solute plumes in saturated porous media: 2-D vs. 3-D flow-through systems.
    Ye Y; Chiogna G; Cirpka O; Grathwohl P; Rolle M
    J Contam Hydrol; 2015 Jan; 172():33-47. PubMed ID: 25462641
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Numerical study of variable-density flow and transport in unsaturated-saturated porous media.
    Liu Y; Kuang X; Jiao JJ; Li J
    J Contam Hydrol; 2015 Nov; 182():117-30. PubMed ID: 26379086
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transverse vertical dispersion in groundwater and the capillary fringe.
    Klenk ID; Grathwohl P
    J Contam Hydrol; 2002 Sep; 58(1-2):111-28. PubMed ID: 12236551
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhancement of dilution and transverse reactive mixing in porous media: experiments and model-based interpretation.
    Rolle M; Eberhardt C; Chiogna G; Cirpka OA; Grathwohl P
    J Contam Hydrol; 2009 Nov; 110(3-4):130-42. PubMed ID: 19896237
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modelling radioiodine transport across a capillary fringe.
    Mathias SA; Butler AP; Wheater HS
    J Environ Radioact; 2008 Apr; 99(4):716-29. PubMed ID: 18022295
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Studies of water velocity in the capillary fringe: the point velocity probe.
    Berg SJ; Gillham RW
    Ground Water; 2010; 48(1):59-67. PubMed ID: 19664049
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interpretation of environmental tracers in groundwater systems with stagnant water zones.
    Maloszewski P; Stichler W; Zuber A
    Isotopes Environ Health Stud; 2004 Mar; 40(1):21-33. PubMed ID: 15085981
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modeling of non-reactive solute transport in fractured clayey till during variable flow rate and time.
    Jørgensen PR; Helstrup T; Urup J; Seifert D
    J Contam Hydrol; 2004 Feb; 68(3-4):193-216. PubMed ID: 14734246
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of water content on reactive transport of 85Sr in Chernobyl sand columns.
    Szenknect S; Ardois C; Dewière L; Gaudet JP
    J Contam Hydrol; 2008 Aug; 100(1-2):47-57. PubMed ID: 18586351
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Simulating the fate and transport of TCE from groundwater to indoor air.
    Yu S; Unger AJ; Parker B
    J Contam Hydrol; 2009 Jul; 107(3-4):140-61. PubMed ID: 19525028
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Experimental investigation and numerical modeling of light nonaqueous phase liquid dissolution and transport in a saturated zone of the soil.
    Sulaymon AH; Gzar HA
    J Hazard Mater; 2011 Feb; 186(2-3):1601-14. PubMed ID: 21232853
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modelling the migration of contaminants through variably saturated dual-porosity, dual-permeability chalk.
    Brouyère S
    J Contam Hydrol; 2006 Jan; 82(3-4):195-219. PubMed ID: 16303208
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Simulating the evolution of an ethanol and gasoline source zone within the capillary fringe.
    Yu S; Freitas JG; Unger AJ; Barker JF; Chatzis J
    J Contam Hydrol; 2009 Feb; 105(1-2):1-17. PubMed ID: 19110339
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Airflow dispersion in unsaturated soil.
    Gidda T; Cann D; Stiver WH; Zytner RG
    J Contam Hydrol; 2006 Jan; 82(1-2):118-32. PubMed ID: 16246460
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Illuminating reactive microbial transport in saturated porous media: demonstration of a visualization method and conceptual transport model.
    Oates PM; Castenson C; Harvey CF; Polz M; Culligan P
    J Contam Hydrol; 2005 May; 77(4):233-45. PubMed ID: 15854718
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Investigation of unsaturated water flow in a deep vadose zone by applying quasi-partition law to 222Rn.
    Hamada H; Miyazaki T
    J Environ Radioact; 2004; 71(2):89-100. PubMed ID: 14567945
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of soil moisture dynamics on dense nonaqueous phase liquid (DNAPL) spill zone architecture in heterogeneous porous media.
    Yoon H; Valocchi AJ; Werth CJ
    J Contam Hydrol; 2007 Mar; 90(3-4):159-83. PubMed ID: 17184872
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.