These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 21131282)

  • 1. EpiChIP: gene-by-gene quantification of epigenetic modification levels.
    Hebenstreit D; Gu M; Haider S; Turner DJ; Liò P; Teichmann SA
    Nucleic Acids Res; 2011 Mar; 39(5):e27. PubMed ID: 21131282
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Role of ChIP-seq in the discovery of transcription factor binding sites, differential gene regulation mechanism, epigenetic marks and beyond.
    Mundade R; Ozer HG; Wei H; Prabhu L; Lu T
    Cell Cycle; 2014; 13(18):2847-52. PubMed ID: 25486472
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genome-wide ChIP-seq mapping and analysis reveal butyrate-induced acetylation of H3K9 and H3K27 correlated with transcription activity in bovine cells.
    Shin JH; Li RW; Gao Y; Baldwin R; Li CJ
    Funct Integr Genomics; 2012 Mar; 12(1):119-30. PubMed ID: 22249597
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Histone H4 acetylation and the epigenetic reader Brd4 are critical regulators of pluripotency in embryonic stem cells.
    Gonzales-Cope M; Sidoli S; Bhanu NV; Won KJ; Garcia BA
    BMC Genomics; 2016 Feb; 17():95. PubMed ID: 26847871
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Diverse histone modifications on histone 3 lysine 9 and their relation to DNA methylation in specifying gene silencing.
    Wu J; Wang SH; Potter D; Liu JC; Smith LT; Wu YZ; Huang TH; Plass C
    BMC Genomics; 2007 May; 8():131. PubMed ID: 17524140
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Genome-Wide Identification of Transcription Factor-Binding Sites in Quiescent Adult Neural Stem Cells.
    Mukherjee S; Hsieh J
    Methods Mol Biol; 2018; 1686():265-286. PubMed ID: 29030827
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genome-wide mapping of histone H3 lysine 4 trimethylation in Eucalyptus grandis developing xylem.
    Hussey SG; Mizrachi E; Groover A; Berger DK; Myburg AA
    BMC Plant Biol; 2015 May; 15():117. PubMed ID: 25957781
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cardiac myosin heavy chain gene regulation by thyroid hormone involves altered histone modifications.
    Haddad F; Jiang W; Bodell PW; Qin AX; Baldwin KM
    Am J Physiol Heart Circ Physiol; 2010 Dec; 299(6):H1968-80. PubMed ID: 20833952
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genome-wide profiling of histone H3K27 acetylation featured fatty acid signalling in pancreatic beta cells in diet-induced obesity in mice.
    Nammo T; Udagawa H; Funahashi N; Kawaguchi M; Uebanso T; Hiramoto M; Nishimura W; Yasuda K
    Diabetologia; 2018 Dec; 61(12):2608-2620. PubMed ID: 30284014
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genome-wide epigenetic analysis of human pluripotent stem cells by ChIP and ChIP-Seq.
    Hitchler MJ; Rice JC
    Methods Mol Biol; 2011; 767():253-67. PubMed ID: 21822881
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genome-wide nucleosome mapping of Plasmodium falciparum reveals histone-rich coding and histone-poor intergenic regions and chromatin remodeling of core and subtelomeric genes.
    Westenberger SJ; Cui L; Dharia N; Winzeler E; Cui L
    BMC Genomics; 2009 Dec; 10():610. PubMed ID: 20015349
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development and application of an integrated allele-specific pipeline for methylomic and epigenomic analysis (MEA).
    Richard Albert J; Koike T; Younesy H; Thompson R; Bogutz AB; Karimi MM; Lorincz MC
    BMC Genomics; 2018 Jun; 19(1):463. PubMed ID: 29907088
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Global and gene-specific histone modification profiles of mouse multipotent adult germline stem cells.
    Khromov T; Pantakani DV; Nolte J; Wolf M; Dressel R; Engel W; Zechner U
    Mol Hum Reprod; 2011 Mar; 17(3):166-74. PubMed ID: 20935159
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The epigenetic landscape of latent Kaposi sarcoma-associated herpesvirus genomes.
    Günther T; Grundhoff A
    PLoS Pathog; 2010 Jun; 6(6):e1000935. PubMed ID: 20532208
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Epigenetic evidence of an Ac/Dc axis by VPA and SAHA.
    Lunke S; Maxwell S; Khurana I; K N H; Okabe J; Al-Hasani K; El-Osta A
    Clin Epigenetics; 2021 Mar; 13(1):58. PubMed ID: 33743782
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of Epigenetic Histone Activation/Repression Marks in Sequences of Genes by Chromatin Immunoprecipitation-Quantitative Polymerase Chain Reaction (ChIP-qPCR).
    Bhatia S; Matthews J; Wells PG
    Methods Mol Biol; 2019; 1965():389-403. PubMed ID: 31069688
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Genome-wide localization of protein-DNA binding and histone modification by a Bayesian change-point method with ChIP-seq data.
    Xing H; Mo Y; Liao W; Zhang MQ
    PLoS Comput Biol; 2012; 8(7):e1002613. PubMed ID: 22844240
    [TBL] [Abstract][Full Text] [Related]  

  • 18. histoneHMM: Differential analysis of histone modifications with broad genomic footprints.
    Heinig M; Colomé-Tatché M; Taudt A; Rintisch C; Schafer S; Pravenec M; Hubner N; Vingron M; Johannes F
    BMC Bioinformatics; 2015 Feb; 16():60. PubMed ID: 25884684
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Picking ChIP-seq peak detectors for analyzing chromatin modification experiments.
    Micsinai M; Parisi F; Strino F; Asp P; Dynlacht BD; Kluger Y
    Nucleic Acids Res; 2012 May; 40(9):e70. PubMed ID: 22307239
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chromatin immunoprecipitation (ChIP) for analysis of histone modifications and chromatin-associated proteins.
    Milne TA; Zhao K; Hess JL
    Methods Mol Biol; 2009; 538():409-23. PubMed ID: 19277579
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.