These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 21131333)

  • 1. Time-resolved vortex wake of a common swift flying over a range of flight speeds.
    Henningsson P; Muijres FT; Hedenström A
    J R Soc Interface; 2011 Jun; 8(59):807-16. PubMed ID: 21131333
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Vortex wake and flight kinematics of a swift in cruising flight in a wind tunnel.
    Henningsson P; Spedding GR; Hedenström A
    J Exp Biol; 2008 Mar; 211(Pt 5):717-30. PubMed ID: 18281334
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Aerodynamics of gliding flight in common swifts.
    Henningsson P; Hedenström A
    J Exp Biol; 2011 Feb; 214(Pt 3):382-93. PubMed ID: 21228197
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The vortex wake of blackcaps (Sylvia atricapilla L.) measured using high-speed digital particle image velocimetry (DPIV).
    Johansson LC; Hedenström A
    J Exp Biol; 2009 Oct; 212(Pt 20):3365-76. PubMed ID: 19801441
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Vortex wake, downwash distribution, aerodynamic performance and wingbeat kinematics in slow-flying pied flycatchers.
    Muijres FT; Bowlin MS; Johansson LC; Hedenström A
    J R Soc Interface; 2012 Feb; 9(67):292-303. PubMed ID: 21676971
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Wake development behind paired wings with tip and root trailing vortices: consequences for animal flight force estimates.
    Horstmann JT; Henningsson P; Thomas AL; Bomphrey RJ
    PLoS One; 2014; 9(3):e91040. PubMed ID: 24632825
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lift calculations based on accepted wake models for animal flight are inconsistent and sensitive to vortex dynamics.
    Gutierrez E; Quinn DB; Chin DD; Lentink D
    Bioinspir Biomim; 2016 Dec; 12(1):016004. PubMed ID: 27921999
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparing aerodynamic efficiency in birds and bats suggests better flight performance in birds.
    Muijres FT; Johansson LC; Bowlin MS; Winter Y; Hedenström A
    PLoS One; 2012; 7(5):e37335. PubMed ID: 22624018
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The aerodynamics of Manduca sexta: digital particle image velocimetry analysis of the leading-edge vortex.
    Bomphrey RJ; Lawson NJ; Harding NJ; Taylor GK; Thomas AL
    J Exp Biol; 2005 Mar; 208(Pt 6):1079-94. PubMed ID: 15767309
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ear-body lift and a novel thrust generating mechanism revealed by the complex wake of brown long-eared bats (Plecotus auritus).
    Johansson LC; Håkansson J; Jakobsen L; Hedenström A
    Sci Rep; 2016 Apr; 6():24886. PubMed ID: 27118083
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multi-cored vortices support function of slotted wing tips of birds in gliding and flapping flight.
    KleinHeerenbrink M; Johansson LC; Hedenström A
    J R Soc Interface; 2017 May; 14(130):. PubMed ID: 28539482
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Wake structure and wing kinematics: the flight of the lesser dog-faced fruit bat, Cynopterus brachyotis.
    Hubel TY; Riskin DK; Swartz SM; Breuer KS
    J Exp Biol; 2010 Oct; 213(Pt 20):3427-40. PubMed ID: 20889823
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Elytra boost lift, but reduce aerodynamic efficiency in flying beetles.
    Johansson LC; Engel S; Baird E; Dacke M; Muijres FT; Hedenström A
    J R Soc Interface; 2012 Oct; 9(75):2745-8. PubMed ID: 22593097
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The influence of wing-wake interactions on the production of aerodynamic forces in flapping flight.
    Birch JM; Dickinson MH
    J Exp Biol; 2003 Jul; 206(Pt 13):2257-72. PubMed ID: 12771174
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structure of the vortex wake in hovering Anna's hummingbirds (Calypte anna).
    Wolf M; Ortega-Jimenez VM; Dudley R
    Proc Biol Sci; 2013 Dec; 280(1773):20132391. PubMed ID: 24174113
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Wake structure and kinematics in two insectivorous bats.
    Hubel TY; Hristov NI; Swartz SM; Breuer KS
    Philos Trans R Soc Lond B Biol Sci; 2016 Sep; 371(1704):. PubMed ID: 27528775
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The near and far wake of Pallas' long tongued bat (Glossophaga soricina).
    Johansson LC; Wolf M; von Busse R; Winter Y; Spedding GR; Hedenström A
    J Exp Biol; 2008 Sep; 211(Pt 18):2909-18. PubMed ID: 18775928
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Aerodynamics of wing-assisted incline running in birds.
    Tobalske BW; Dial KP
    J Exp Biol; 2007 May; 210(Pt 10):1742-51. PubMed ID: 17488937
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bat flight: aerodynamics, kinematics and flight morphology.
    Hedenström A; Johansson LC
    J Exp Biol; 2015 Mar; 218(Pt 5):653-63. PubMed ID: 25740899
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Kinematics and aerodynamics of avian upstrokes during slow flight.
    Crandell KE; Tobalske BW
    J Exp Biol; 2015 Aug; 218(Pt 16):2518-27. PubMed ID: 26089528
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.