These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
183 related articles for article (PubMed ID: 21131333)
21. Estimates of circulation and gait change based on a three-dimensional kinematic analysis of flight in cockatiels (Nymphicus hollandicus) and ringed turtle-doves (Streptopelia risoria). Hedrick TL; Tobalske BW; Biewener AA J Exp Biol; 2002 May; 205(Pt 10):1389-409. PubMed ID: 11976351 [TBL] [Abstract][Full Text] [Related]
22. Flight kinematics of black-billed magpies and pigeons over a wide range of speeds. Tobalske B; Dial K J Exp Biol; 1996; 199(Pt 2):263-80. PubMed ID: 9317775 [TBL] [Abstract][Full Text] [Related]
23. Wing inertia and whole-body acceleration: an analysis of instantaneous aerodynamic force production in cockatiels (Nymphicus hollandicus) flying across a range of speeds. Hedrick TL; Usherwood JR; Biewener AA J Exp Biol; 2004 Apr; 207(Pt 10):1689-702. PubMed ID: 15073202 [TBL] [Abstract][Full Text] [Related]
24. Kinematic control of male Allen's hummingbird wing trill over a range of flight speeds. Clark CJ; Mistick EA J Exp Biol; 2018 Jul; 221(Pt 14):. PubMed ID: 29776995 [TBL] [Abstract][Full Text] [Related]
25. The leading-edge vortex over a swift-like high-aspect-ratio wing with nonlinear swept-back geometry. Ben-Gida H; Gurka R Bioinspir Biomim; 2022 Oct; 17(6):. PubMed ID: 36261048 [TBL] [Abstract][Full Text] [Related]
26. Three-dimensional vortex wake structure of flapping wings in hovering flight. Cheng B; Roll J; Liu Y; Troolin DR; Deng X J R Soc Interface; 2014 Feb; 11(91):20130984. PubMed ID: 24335561 [TBL] [Abstract][Full Text] [Related]
27. Biomechanics and physiology of gait selection in flying birds. Tobalske BW Physiol Biochem Zool; 2000; 73(6):736-50. PubMed ID: 11121347 [TBL] [Abstract][Full Text] [Related]
28. Volumetric visualization of the near- and far-field wake in flapping wings. Liu Y; Cheng B; Barbera G; Troolin DR; Deng X Bioinspir Biomim; 2013 Sep; 8(3):036010. PubMed ID: 23924871 [TBL] [Abstract][Full Text] [Related]
30. Gliding swifts attain laminar flow over rough wings. Lentink D; de Kat R PLoS One; 2014; 9(6):e99901. PubMed ID: 24964089 [TBL] [Abstract][Full Text] [Related]
31. Turbulent Wake-Flow Characteristics in the Near Wake of Freely Flying Raptors: A Comparative Analysis Between an Owl and a Hawk. Krishnan K; Ben-Gida H; Morgan G; Kopp GA; Guglielmo CG; Gurka R Integr Comp Biol; 2020 Nov; 60(5):1109-1122. PubMed ID: 32697833 [TBL] [Abstract][Full Text] [Related]
32. Direct measurements of the kinematics and dynamics of bat flight. Tian X; Iriarte-Diaz J; Middleton K; Galvao R; Israeli E; Roemer A; Sullivan A; Song A; Swartz S; Breuer K Bioinspir Biomim; 2006 Dec; 1(4):S10-8. PubMed ID: 17671313 [TBL] [Abstract][Full Text] [Related]
33. A family of vortex wakes generated by a thrush nightingale in free flight in a wind tunnel over its entire natural range of flight speeds. Spedding GR; Rosén M; Hedenström A J Exp Biol; 2003 Jul; 206(Pt 14):2313-44. PubMed ID: 12796450 [TBL] [Abstract][Full Text] [Related]
34. Leading-edge vortex improves lift in slow-flying bats. Muijres FT; Johansson LC; Barfield R; Wolf M; Spedding GR; Hedenström A Science; 2008 Feb; 319(5867):1250-3. PubMed ID: 18309085 [TBL] [Abstract][Full Text] [Related]
35. Mechanical power curve measured in the wake of pied flycatchers indicates modulation of parasite power across flight speeds. Johansson LC; Maeda M; Henningsson P; Hedenström A J R Soc Interface; 2018 Jan; 15(138):. PubMed ID: 29386402 [TBL] [Abstract][Full Text] [Related]
36. Hummingbird flight stability and control in freestream turbulent winds. Ravi S; Crall JD; McNeilly L; Gagliardi SF; Biewener AA; Combes SA J Exp Biol; 2015 May; 218(Pt 9):1444-52. PubMed ID: 25767146 [TBL] [Abstract][Full Text] [Related]
37. Reynolds number dependency of an insect-based flapping wing. Han JS; Chang JW; Kim ST Bioinspir Biomim; 2014; 9(4):046012. PubMed ID: 25381677 [TBL] [Abstract][Full Text] [Related]
38. Fluid-structure interaction simulation of an avian flight model. Ruck S; Oertel H J Exp Biol; 2010 Dec; 213(Pt 24):4180-92. PubMed ID: 21112999 [TBL] [Abstract][Full Text] [Related]
39. Wing beat kinematics of a nectar-feeding bat, Glossophaga soricina, flying at different flight speeds and Strouhal numbers. Lindhe Norberg UM; Winter Y J Exp Biol; 2006 Oct; 209(Pt 19):3887-97. PubMed ID: 16985205 [TBL] [Abstract][Full Text] [Related]
40. Unconventional lift-generating mechanisms in free-flying butterflies. Srygley RB; Thomas AL Nature; 2002 Dec; 420(6916):660-4. PubMed ID: 12478291 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]